The empirical formula of the solid made of FCC unit cell containing 8X atoms at the corners and 6Y atoms at the faces has to be determined. Concept Introduction: In crystalline solids , the components are packed in regular pattern and neatly stacked. The components are imagined as spheres and closely packed. This phenomenon is called “close packing” in crystals. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell. In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom. Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is, 8 × 1 8 atoms in corners + 6 × 1 2 atoms in faces = 1 + 3 = 4 atoms
The empirical formula of the solid made of FCC unit cell containing 8X atoms at the corners and 6Y atoms at the faces has to be determined. Concept Introduction: In crystalline solids , the components are packed in regular pattern and neatly stacked. The components are imagined as spheres and closely packed. This phenomenon is called “close packing” in crystals. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell. In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom. Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is, 8 × 1 8 atoms in corners + 6 × 1 2 atoms in faces = 1 + 3 = 4 atoms
Solution Summary: The author explains the empirical formula of the solid made of FCC unit cell containing XY_3.
The empirical formula of the solid made of FCC unit cell containing
8X atoms at the corners and
6Y atoms at the faces has to be determined.
Concept Introduction:
In crystalline solids, the components are packed in regular pattern and neatly stacked. The components are imagined as spheres and closely packed. This phenomenon is called “close packing” in crystals. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell.
In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom.
Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is,
Please, help me out with the calculation, step by step on how to find what's blank with the given information.
Predict the following products. Then show the mechanism.
H₂N
NH2
BF3, Boron Trifluoride, known to contain three covalent boron-fluorine bonds. suggest and illustrate all of the processes as well as their energetical consequences for the formation of BF3 from its elements.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Unit Cell Chemistry Simple Cubic, Body Centered Cubic, Face Centered Cubic Crystal Lattice Structu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=HCWwRh5CXYU;License: Standard YouTube License, CC-BY