Concept explainers
Figure 12.7 shows a branched system in which the pressure at A is
Total volume flow rate by using the given information.
Answer to Problem 12.1PP
The total volume flow rate is determined below.
Explanation of Solution
First we have to find the head loss at point A and B on applying the energy equation.
Here
And then parallel system head losses for both the parts are same
Then substitute
Then the roughness of steel pipe is
Inside diameter of the pipe is
Find the relative roughness of the elbow
Corresponding to friction factor value is
Find the total head loss of the upper section
For 900 elbows curved, effective length ratio is
Substitute required values we will get
From the table of text book DN 80 pipes the inside diameter of the pipe is 0.0779m
Find the relative rough ness
Find the total head loss of the lower branch we will get
Substitute above values we get
Assume
Find the flow velocity at upper branch
Substitute above value we get
Find the Reynolds number for the flow
Find the relative roughness we get
Then the value of friction factor is
Find the flow velocity at B
Substitute above values we get
Calculate the Reynolds number for the flow
Substitute above values we get
Find the relative roughness value
Then the value of friction factor is
Recomputed the velocity of flow using above equation
Find the Reynolds number for the flow
Substitute above values we get
Find the value of relative roughness
From Moody's diagram, the value of relative roughness and Reynolds number
Find the flow rate at A,
We get
Find the flow rate at B
Total volume flow rate is
Want to see more full solutions like this?
Chapter 12 Solutions
Applied Fluid Mechanics (7th Edition)
Additional Engineering Textbook Solutions
Mechanics of Materials (10th Edition)
Statics and Mechanics of Materials (5th Edition)
Engineering Mechanics: Statics
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Engineering Mechanics: Statics & Dynamics (14th Edition)
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
- 4. A crude oil of viscosity 0.9 poise and sp. gr. 0.8 is flowing through a horizontal circular pipe of diameter 80 mm and of length 15 m. Calculate the difference of pressure at the two ends of the pipe, if 50 kg of the oil is collected in a tank in 15 seconds.arrow_forwardThe picture below depicts a system for delivering chocolate ganache in liquid form. Thenozzle on the end of the hose requires 140 kPa of pressure to operate effectively. Thehose is smooth plastic with an ID of 25 mm. The chocolate has a specific gravity of 1.1and a dynamic viscosity of 2.0 X 10-3 Pa*s. If the length of the hose is 85 m and there is a change in height of 10 m, determine(a) the power delivered by the pump to the ganache and(b) the pressure at the outlet of the pump.Neglect the energy losses on the suction side of the pump. The flow rate is 85 L/min.arrow_forwardAnswer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!arrow_forward
- Ex. 2.11 A pump delivering 230 Ips of water whose absolute viscosity is 0.0114 Poise has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure below. The suction pipe is 3.5 m long and the discharge pipe is 23 m long. The water is delivered 16 m above the intake water level. Considering the head losses in fittings and valves, find the head which the pump must supply. If the motor brake power of the driving motor is 75 kW, what is the efficiency of the pump? Assume the pipe material as cast iron. Given: A figure showing a pumping installation Q= 230 Ips D = 300 mm D = 254 mm H = 0.0114 Poise = 0.00114 Pa-s BP = 75 kW %3D %3D Standard elbow Standard elbow Discharge reservoir Long sweep elbow z=z, +2, Pump Source Foot valve & strainer Required: a) The total dynamic head b) The pump efficiency wilz,arrow_forwardPlease see attachment.arrow_forwardShow complete solution and formulas used. Show the schematic diagram too. Calculate the required pipe diameter to avoid cavitation, if the pump delivers Q = 30US gallon/min water from a closed tank, where the pressure (above the water level) is p = 40kPa. The equivalent length of the smoothened concrete pipe on the suction side is 12m while the suction flange of the pump is 8m below the water level. The vapour pressure at the given water temperature is 2.8kPa. The required net positive suction head is NPSHr = 3.2m.arrow_forward
- A pump is used in a building to lift water from a ground floor. The pump is pushing 60l/sec of water through a 0.1m diameter to above floor which is 5m high If the average velocity in the pipe is 6m/s. what will major energy loss if the dynamic viscosity of water is 8.9 x 10-4s. Due to vibration and noise issue in a pipe the velocity of pump is decided to set at 2.5 m/s. What will new major energy? Calculate the minor energy loss if length of the pipe is 15m. use f = 0.03, = 1, = 0.9 Analyse the relationship between frictional energy loss under different gravitational flow conditionsarrow_forwardAn oil of viscosity 0.24 Ns/m² and relative density 0.89 is flowing through a circular pipe of diameter 70 mm and length of 200 m. The rate of flow of fluid through the pipe is 4.8 litres/s. Find the pressure drop in a length of 200 m and also the shear stress at the pipe wall.arrow_forwardAn oil with a specific gravity of 0.84 and a viscosity of 50 cp is flowing downwards in a vertical pipe of inside diameter 3 in. If the water-oil manometer connected to a pitot tube, shows a reading of 25 in, calculate the maximum velocity of the flow of oil in the pipe. Reynolds number of the flow of oil in the pipe. average velocity of the flow of oil in the pipe. piezometric head due to the pitot tube. volumetric flow rate of oil.arrow_forward
- 4.5.4 The pressure at point 1 in the parallel pipe system shown in the figure below is 750 kPa. If the flow rate through the system is 0.50 m3/s, what is the pressure at point 2? Neglect minor losses. All the pipes are steel with roughness value of 0.046 mm. Also, determine the fraction of the flow in each of the parallel pipes and check your solution. Take the Kinematic viscosity, v = 1.141 x 10^6 m2 /s. 300 mm dia 1. 600 m, 240 mm dia A 450 m, 200 mm dia B C 720 m, 220 mm dia D 200 m, 300 mm dia 2.arrow_forwardAn inclined pipe of 4-inch ID is used to transport a viscous oil from one open-top container A to another open-top container B. The specific gravity of the oil is 0.9 and the viscosity of the oil is 20 cp. The length of the pipe is 100 ft. Oil levels in these two containers are shallow and the inlet and outlet pressures across the tube can be assumed to be identical – both 1 atm. What is the angle needed to maintain a flow rate of oil of 1 cuft / second? The levels of oil in A and B do not change – oil is continually added to A at the rate of 1 cuft / second and is continuously removed from B at the same rate. Aarrow_forwardB1. A water with viscosity 11.4x10-3 poise is flowing through a pipe of diameter 300 mm at the rate of 500 litres per sec. Find the Reynold's Number & the head lost due to friction in the pipe of length 1 km. (Enter only the values by referring the unit given. Also upload the hand written answers in the link provided) The velocity of flow of water (in m/s) is The value of Reynold's Number is The frictional loss in the pipe (in m) isarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY