Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.2PP
Using the system shown in Fig. 12.2 and the data from Example Problem 12.1 determine (a) the volume flow rate of water in each branch and (b) the pressure drop between points 1 and 2 if the first gate valve is one-half closed and the other valves are wide open.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw a simple flowchart of a hypothetical oxygen piping system containing the following components:
1 pressure swing adsorption (PSA) generator.
1 compressor to pressurize the oxygen that will be transported in the tubes.
1 storage tank to retain oxygen before use.
1 industrial combustion process to serve as an energy consumer
2 heat exchangers to control the oxygen temperature.
4 pumps to move oxygen through the piping system.
Required quantity of pressure relief valves, flow valves, drains and vents.
Please list any assumptions and answer all parts
4. A special oil is to be used in an absorption tower. The preliminary design of the unit
requires the oil to be pumped from an open tank with a 10 ft liquid level above the floor and
forced through 150 ft of 3 inches schedule 40 pipe with a ball check valve and 5 elbows into
the top of a tower 30 ft above the floor. The operating pressure in the tower is to be 52 psig
and the oil requirement is estimated at 50 gpm. The viscosity of the oil 15 cP and its density
is 53.5 Ibm/ft. Assuming the pumping outfit operates with an overall efficiency of 60%, what
horsepower input will be required for the pump motor?
Chapter 12 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 12 - Figure 12.7 shows a branched system in which the...Ch. 12 - Using the system shown in Fig. 12.2 and the data...Ch. 12 - In the branched pipe system shown in Fig. 12.8...Ch. 12 - In the branched-pipe system shown in Fig. 12.9...Ch. 12 - A 160mm pipe branches into a 100mm and a 50mm pipe...Ch. 12 - For the system shown in Fig. 12.11 the pressure at...Ch. 12 - Solve Problem 12.4 using the Cross technique.Ch. 12 - Solve Problem 12.3 using the Cross techniqueCh. 12 - Find the flow rate of water at 60Fin each pipe of...Ch. 12 - Figure 12.13 represents a spray rinse system in...
Ch. 12 - Figure 12.14 represents the water distribution...Ch. 12 - Figure 12.15 represents the network for delivering...Ch. 12 - Work Problem 12.4 using PIPE-FLO software. Display...Ch. 12 - 2. Enhance the program from Assignment 1 so that...Ch. 12 - Write a program or a spreadsheet for analyzing...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5. A duct of 0.45 m diameter and 90 m long leads from a fan discharge chamber where the pressure is 15 mm of water to a plenum chamber where the pressure is 10 mm of water. In order to increase the flow, two alternatives are considered. One is to lay a duct of 0.3 m diameter and 90 m long in parallel with the duct of 0.45 m diameter. The other is to increase the diameter of 0.45 m diameter duct for the last 60 m length. Calculate the increased diameter so that this method gives the same flow as the 0.45 m and 0.3 m ducts in parallel. Assume that the pressures in the fan chamber and plenum chamber are unaffected by changes in the flow and consider duct friction losses only. The friction factor may be taken as 0.0o55. 6. A 0.3 m diameter circular duct carries standard air at a velocity of 360 m/min. It is replaced by a rectangular duct having the same pressure loss per unit length due to friction. Determine the dimensions of the rectangular duct if the aspect ratio is to be 1.5 for (a)…arrow_forwardA manufacturer lists the flow coefficient for a certain control valve as 3.5 at a flow rate of 40 gal/min and a fluid Sg of 0.92 when the machine is at operating temperature. What would be the pressure drop across the valve?arrow_forward1. Describe the factors influencing the flow rate and pressure in pressurized flow systems, such as pipes or conduits?arrow_forward
- Problem 21.12 The diameters of fixed ram and fixed cylinder of an intensifier are 8 cm and 20 cm respectively. If the pressure of the water supplied to the fixed cylinder is 300 N/cm“, find the pressure of the water flowing through the fixed ram.arrow_forwardA centrifugal pump takes brine from the bottom of a supply tank and delivers it into the bottom of another tank. The brine level in the discharge tank is 150 ft above that in the supply tank. The line between the tanks is 600 ft of 4-in. Schedule 40 commercial steel pipe. The flow rate is 400 gal/min. In the line are two gate valves, four standard tees, and four ells. The specific gravity of brine is 1.18, the viscosity of brine is 1.2 cP, and the energy cost is $400 per horsepower-year on a basis of 300 days per year. The overall efficiency of pump and motor is 60 %. What is the fanning friction factor, using the churchill equation? What is the loss factor for a wide open gate valve? What is he loss factor for a standard tee ?arrow_forwardA well is going to be installed with a sucker rod pumping unit a. For the well to be installed with a sucker rod pump calculate the effective plunger stroke length for a well with a rod pump set at 3600 ft. The well has 3/4-in. sucker rods and 2 7/8-in. tubing, and the specific gravity of the produced liquid is 0.90. The pump speed is 12 spm, the plunger is 2 in. in diameter, and the polished rod stroke length is 64 in.The well is pumped off, so the liquid level is at the pump depth. b. For well in part a surface production rate the surface with a rod pump having a volumetric efficiency of 0.8. The oil formation volume factor is 1.2arrow_forward
- Don't use chatgpt. I need right answer.arrow_forwardFind the loss in total pressure for each run in the simple duct system of Fig. 1, using the equal-friction method and in English unit. The total pressure available for the duct system is 0.12 in. wg (30 Pa), and the loss in total pressure for each diffuser at the specified flow rate is 0.02 in. wg (5 Pa). Duct fittings are listed in Table 1. Assume the duct dimeter in run 1 is 10 in. and the rest are 8 in. Does the duct system require any adjustment? 150 cfm e. a 15 ft Plenum е 15 ft 5 ft 5 ft a 3. 20 ft 4 10 ft 200 cfm e 10 ft 150 cfm b Duct Fittings for Figure 1 Fittings Type Abrupt Entrance 90 deg Elbow, Pleated Round to Rectangular boot, Straight 45 deg. Converging Wye 45 deg Elbow, Pleated a d earrow_forwardQ2- Water ( p= 990 kg/m & u= 0.001 pa.s) is pumping from a water tank to water injection well with carbon steel pipe at the same level, where the pipe diameter is 12 inch, pipe length is 4700 m, pipe roughness is 0.0000045 m, and water flow rate is 0.0065 m/sec. 1- Calculate discharge frictional head loss. 2- Calculate pump liquid power, if pump section head value is 3.8 m.arrow_forward
- For the single pump-pipe system below, what will be the changes for the operating point if we increase the pipe size but decrease the shaft speed of the pump? EB H₂ O The operating point will remain the same. O The operating point will occur either at a higher discharge or at a lower discharge, depending on the specific influence of each change. O The operating point will occur at a higher discharge. O The operating point will occur at a lower discharge.arrow_forwardA "spa tub" is to be designed to replace bath tubs in reno- vations. There are to be 6 outlet nozzles, each with a di- ameter of 12 mm, and each should have an outlet velocity of 12 m/s. What is the required flow rate from the single pump that supplies all of these nozzles? If there is one suction line leading to the pump, what is the minimum diameter to limit the velocity at the inlet of the pump to 2.5 m/s?arrow_forwardA Process fluid is pumped from the bottom of one distillation column to another, using a centrifugal pump. The line is a standard commercial steel pipe with a 75 mm internal diameter. From the column to the pump inlet the line is 25 m long and contains six standard elbows and a fully open gate valve From the pump outlet to the second column, the line is 250 m long and contains ten standard elbows, and four gate valves (operated fully open). The fluid level in the first column is 4 m above the pump inlet. The feed point of the second column is 6 m above the pump inlet. The operating pressure in the first column is 1.05 bara and that of the second column is 0.3 barg. (i) Draw the system, (ii) determine the operating point on the pump characteristic curve. (iii) determine the NPSH at this flowrate. The physical properties of the fluid are: density 875 kg/m³, viscosity 1.46 mNs.m², and vapour pressure of the fluid at the pump suction is 25 kN/m². Kelbow-0.75, Kvalve 0.17. Flow rate, m³/h…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license