Concept explainers
Liquids A (molar mass 100 g/mol) and B (molar mass 110 g/mol) form an ideal solution. At 55°C, A has a vapor pressure of 95 mmHg and B has a vapor pressure of 42 mmHg. A solution is prepared by mixing equal masses of A and B. (a) Calculate the mole fraction of each component in the solution. (b) Calculate the partial pressures of A and B over the solution at 55°C. (c) Suppose that some of the vapor described in (b) is condensed to a liquid in a separate container. Calculate the mole fraction of each component in this liquid and the vapor pressure of each component above this liquid at 55°C.
(a)
Interpretation:
Mole fraction of each component present in the given solution has to be calculated.
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
Mole fraction: Concentration of the solution can also expressed by mole fraction. Mole fraction is equal to moles of the component divided by total moles of the mixture.
Answer to Problem 12.130QP
Mole fraction of component A is
Mole fraction of component B is
Explanation of Solution
Given data:
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
Calculate mole fraction of each component:
Assume
The mole fraction of the component is calculated by moles of the component divided by the total number of moles in the mixture.
Substituting the values of moles of each component and total moles of the component, the mole fraction of each component has calculated.
(b)
Interpretation:
The partial pressure of the components over the given solution at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
Answer to Problem 12.130QP
Partial pressure of solution A is
Partial pressure of solution B is
Explanation of Solution
Calculate partial pressure of each component:
The formula for partial pressure,
According to Raoult’s law, the vapour pressure of the solution is sum of the individual partial pressure exerted by the solution and then using partial pressure equation, partial pressure of each component has been calculated.
(c)
Interpretation:
The mole fraction of each component in the condensed liquid and the vapour pressure of the components above the condensed liquid at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
Answer to Problem 12.130QP
Mole fraction of component A in condensed liquid is
Mole fraction of component B in condensed liquid is
Partial pressure of the component A above condensed liquid at
Partial pressure of the component B above condensed liquid at
Explanation of Solution
The mole fraction is equal to partial pressure of the component divided by the total pressure.
Substituting the value of partial pressure of each component and total pressure, the mole fraction of each component at condensed liquid has calculated.
Calculation of partial pressure of each component
The mole fraction of each component in condensed liquid is,
Want to see more full solutions like this?
Chapter 12 Solutions
CHEMISTRY (LOOSELEAF) >CUSTOM<
- Zeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning