A gaseous material XY( g ) dissociates to some extent to produce X( g ) and Y( g ): XY ( g ) ⇌ X ( g ) + Y ( g ) A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25°C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25°C.
A gaseous material XY( g ) dissociates to some extent to produce X( g ) and Y( g ): XY ( g ) ⇌ X ( g ) + Y ( g ) A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25°C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25°C.
Solution Summary: The author explains how the equilibrium constant K describes the ratio of the reactant to the product on equilibrium conditions in terms of molar concentration.
A gaseous material XY(g) dissociates to some extent to produce X(g) and Y(g):
XY
(
g
)
⇌
X
(
g
)
+
Y
(
g
)
A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25°C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25°C.
A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C.
H₂O(g) + C₁₂O(g) = 2 HOCl(g)
K = 0.0900 at 25°C
с
Calculate the equilibrium concentrations of each gas at 25 °C.
[H₂O]=
[C₁₂O]=
[HOCI]=
M
Σ
M
What units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?
Provide the structure, circle or draw, of the monomeric unit found in the biological polymeric
materials given below.
HO
OH
amylose
OH
OH
행
3
HO
cellulose
OH
OH
OH
Ho
HO
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell