The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
Solution Summary: The author explains that the equilibrium constant K describes the ratio of the reactant to the product on equilibrium conditions in terms of molar concentration.
Interpretation: The pressure at which
95% of the Oxygen molecules dissociate is to be calculated.
Concept introduction: The equilibrium constant
K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration.
The equilibrium constant depends upon temperature.
Law of mass action is applicable on the equilibrium reactions.
The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature.
The dissociation of the species is denotes by the symbol
α.
To determine: The pressure at which
95% of the Oxygen molecules dissociate at the constant temperature.
A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C.
H₂O(g) + C₁₂O(g) = 2 HOCl(g)
K = 0.0900 at 25°C
с
Calculate the equilibrium concentrations of each gas at 25 °C.
[H₂O]=
[C₁₂O]=
[HOCI]=
M
Σ
M
What units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?
Provide the structure, circle or draw, of the monomeric unit found in the biological polymeric
materials given below.
HO
OH
amylose
OH
OH
행
3
HO
cellulose
OH
OH
OH
Ho
HO
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell