Introduction to Chemistry
4th Edition
ISBN: 9780073523002
Author: Rich Bauer, James Birk Professor Dr., Pamela S. Marks
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 113QP
Interpretation Introduction
Interpretation:
The reason why a catalyst increases the reaction rate by lowering the activation energy is to be explained.
Concept Introduction:
Catalysts are the compounds used in a reaction to lower or increase the
A catalyst increases the rate of reaction by providing an alternative pathway of lowered activation energy of the reaction so that a large number of reactants gets converted into products.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Introduction to Chemistry
Ch. 12 - Prob. 1QCCh. 12 - Prob. 2QCCh. 12 - Prob. 3QCCh. 12 - Prob. 4QCCh. 12 - Prob. 5QCCh. 12 - Prob. 6QCCh. 12 - Prob. 1PPCh. 12 - Prob. 2PPCh. 12 - Prob. 3PPCh. 12 - Prob. 4PP
Ch. 12 - Prob. 5PPCh. 12 - Prob. 6PPCh. 12 - Prob. 7PPCh. 12 - Prob. 8PPCh. 12 - Prob. 9PPCh. 12 - Prob. 10PPCh. 12 - Consider the following equilibrium:...Ch. 12 - Prob. 12PPCh. 12 - Prob. 1QPCh. 12 - Match the key terms with the descriptions...Ch. 12 - Prob. 3QPCh. 12 - Prob. 4QPCh. 12 - Prob. 5QPCh. 12 - Prob. 6QPCh. 12 - Prob. 7QPCh. 12 - Prob. 8QPCh. 12 - Prob. 9QPCh. 12 - Prob. 10QPCh. 12 - Prob. 11QPCh. 12 - Prob. 12QPCh. 12 - Prob. 13QPCh. 12 - Prob. 14QPCh. 12 - Prob. 15QPCh. 12 - Prob. 16QPCh. 12 - Prob. 17QPCh. 12 - Prob. 18QPCh. 12 - Prob. 19QPCh. 12 - Prob. 20QPCh. 12 - Prob. 21QPCh. 12 - Prob. 22QPCh. 12 - Prob. 23QPCh. 12 - Prob. 24QPCh. 12 - Prob. 25QPCh. 12 - Prob. 26QPCh. 12 - Prob. 27QPCh. 12 - Prob. 28QPCh. 12 - Prob. 29QPCh. 12 - Prob. 30QPCh. 12 - Prob. 31QPCh. 12 - Prob. 32QPCh. 12 - Prob. 33QPCh. 12 - Prob. 34QPCh. 12 - Prob. 35QPCh. 12 - Prob. 36QPCh. 12 - Prob. 37QPCh. 12 - Prob. 38QPCh. 12 - Prob. 39QPCh. 12 - Prob. 40QPCh. 12 - Prob. 41QPCh. 12 - Prob. 42QPCh. 12 - Prob. 43QPCh. 12 - Prob. 44QPCh. 12 - Prob. 45QPCh. 12 - Prob. 46QPCh. 12 - Prob. 47QPCh. 12 - Prob. 48QPCh. 12 - Prob. 49QPCh. 12 - Prob. 50QPCh. 12 - Prob. 51QPCh. 12 - Prob. 52QPCh. 12 - Prob. 53QPCh. 12 - Prob. 54QPCh. 12 - Prob. 55QPCh. 12 - Prob. 56QPCh. 12 - Prob. 57QPCh. 12 - Prob. 58QPCh. 12 - Prob. 59QPCh. 12 - Prob. 60QPCh. 12 - Prob. 61QPCh. 12 - Prob. 62QPCh. 12 - Prob. 63QPCh. 12 - Prob. 64QPCh. 12 - Prob. 65QPCh. 12 - Prob. 66QPCh. 12 - Prob. 67QPCh. 12 - Prob. 68QPCh. 12 - Prob. 69QPCh. 12 - Prob. 70QPCh. 12 - Prob. 71QPCh. 12 - Prob. 72QPCh. 12 - Prob. 73QPCh. 12 - Prob. 74QPCh. 12 - Prob. 75QPCh. 12 - Prob. 76QPCh. 12 - Prob. 77QPCh. 12 - Prob. 78QPCh. 12 - Prob. 79QPCh. 12 - Prob. 80QPCh. 12 - Prob. 81QPCh. 12 - Prob. 82QPCh. 12 - Prob. 83QPCh. 12 - Prob. 84QPCh. 12 - Prob. 85QPCh. 12 - Prob. 86QPCh. 12 - Prob. 87QPCh. 12 - Prob. 88QPCh. 12 - Prob. 89QPCh. 12 - Prob. 90QPCh. 12 - Prob. 91QPCh. 12 - Prob. 92QPCh. 12 - Prob. 93QPCh. 12 - Prob. 94QPCh. 12 - Prob. 95QPCh. 12 - Prob. 96QPCh. 12 - Prob. 97QPCh. 12 - Prob. 98QPCh. 12 - Prob. 99QPCh. 12 - Prob. 100QPCh. 12 - Prob. 101QPCh. 12 - Prob. 102QPCh. 12 - Prob. 103QPCh. 12 - Prob. 104QPCh. 12 - Prob. 105QPCh. 12 - Prob. 106QPCh. 12 - Prob. 107QPCh. 12 - Prob. 108QPCh. 12 - Prob. 109QPCh. 12 - Prob. 110QPCh. 12 - Prob. 111QPCh. 12 - Prob. 112QPCh. 12 - Prob. 113QPCh. 12 - Prob. 114QPCh. 12 - Prob. 115QPCh. 12 - Prob. 116QPCh. 12 - Prob. 117QPCh. 12 - Prob. 118QPCh. 12 - Prob. 119QPCh. 12 - Prob. 120QPCh. 12 - Prob. 121QPCh. 12 - Prob. 122QPCh. 12 - Prob. 123QPCh. 12 - Prob. 124QPCh. 12 - Prob. 125QPCh. 12 - Prob. 126QPCh. 12 - Prob. 127QPCh. 12 - Prob. 128QPCh. 12 - Prob. 129QPCh. 12 - Prob. 130QPCh. 12 - Prob. 131QPCh. 12 - Prob. 132QPCh. 12 - Prob. 133QPCh. 12 - Prob. 134QPCh. 12 - Prob. 135QPCh. 12 - Prob. 136QPCh. 12 - Prob. 137QPCh. 12 - Prob. 138QPCh. 12 - Prob. 139QPCh. 12 - Prob. 140QPCh. 12 - Prob. 141QPCh. 12 - Prob. 142QPCh. 12 - Prob. 143QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Apply collision theory to explain why increasing the concentration of a reactant usually increases the reaction rate.arrow_forwardClassify each of the following statements as true or false. aSome equilibria depend on a steady supply of a reactant in order to maintain the equilibrium. bBoth forward and reverse reactions continue after equilibrium is reached. cEvery time reactant molecules collide, there is a reaction. dPotential energy during a collision is greater than potential energy before or after the collision. eThe properties of a transition state are between those of the reactants and products. fActivation energy is positive for both the forward and reverse reactions. gKinetic energy is changed to potential energy during a collision. hAn increase in temperature speeds the forward reaction but slows the reverse reaction. iA catalyst changes the steps by which a reaction is completed. jAn increase in concentration of a substance on the right-hand side of an equation speeds the reverse reaction rate. kAn increase in the concentration of a substance in an equilibrium increases the reaction rate in which the substance is a product. lReducing the volume of a gaseous equilibrium shifts the equilibrium in the direction of fewer gaseous molecules. mRaising temperature results in a shift in the forward direction of an endothermic equilibrium. nThe value of an equilibrium constant depends on temperature. oA large K indicates that an equilibrium is favored in the reverse direction.arrow_forwardBy which of the following mechanisms does a catalyst operate? a. It decreases the activation energy barrier for a reaction. b. It serves as a reactant and is consumed. c. It increases the temperature of a reaction. d. It increases the concentration of reactants.arrow_forward
- . Account for the increase in reaction rate brought about by a catalyst.arrow_forwardSketch energy diagrams to represent each of the following. Label the diagrams completely and tell how they are similar to each other and how they are different. a. Exothermic exergonic reaction with activation energy b. Exothermic exergonic reaction without activation energyarrow_forwarduse the kineticmolecular theory to explain why an increase in temperature increases reaction rate.arrow_forward
- The equilibrium constant expression for a given reaction depends on how the equilibrium equation is written. Explain the meaning of that statement. You may, if you wish, use the equilibrium equation N2(g)+3H2(g)2NH3(g) to illustrate your explanation.arrow_forwardDraw an energy diagram graph for an endothermic reaction where no catalyst is present. Then draw an energy diagram graph for the same reaction when a catalyst is present. Indicate the similarities and differences between the two diagrams.arrow_forward. In your own words, describe what Le Châtelier’s principle tells us about how we can change the position of a reaction system at equilibrium.arrow_forward
- Suppose you have two identical unopened bottles of carbonated beverage. The contents of both bottles appear to be perfectly clear. You loosen the cap of one of the bottles and hear a hiss as gas escapes, and at the same time gas bubbles appear in the liquid. The liquid in the unopened bottle still appears to be perfectly clear. Explain these observations using the concept of equilibrium and Le Chteliers principle. Remember, a carbonated beverage contains carbon dioxide gas dissolved in a liquid under pressure.arrow_forwardIn the figure, orange fish are placed in one aquarium and green fish in an adjoining aquarium. The two tanks are separated by a removable partition that is initially closed. (a) Describe what happens in the first few minutes after the partition is opened. (b) What would you expect to see several hours later? (c) How is this system analogous to dynamic chemical equilibrium?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY