Air enters a 5-cm-diameter, 4-m-long adiabatic duct with inlet conditions of
FIGURE P12-102
Velocity, temperature and pressure at the duct exit.
Answer to Problem 102P
Explanation of Solution
Given:
The properties of air to be,
Temperature
Pressure at Inlet
The average friction factor is given to be
Calculation:
The Fanno flow functions corresponding to the inlet Mach number of
First we check that the flow in everywhere shock at upstream is supersonic. The required length of duct from the inlet
This is higher than the actual length of
Therefore, the flow is indeed supersonic when the normal shock appears at the indicated location. Then, using the actual duct length
Taking the value
From
Calculating the temperature, pressure, and velocity before the shock,
The normal shock functions corresponding to Mach number
Then the temperature after the shock will be,
Pressure after the shock will be,
Sonic conditions exist at the exit of duct, and the flow downstream the shock will be Fanno flow. From
Calculating the temperature at the duct exit is given by,
Therefore, the temperature at the duct exit is
Calculating the pressure at the duct exit is given by,
Therefore, the pressure at the duct exit is
Calculating the velocity at the duct exit is given by,
Therefore, the velocity at the duct exit is
Want to see more full solutions like this?
Chapter 12 Solutions
Fluid Mechanics: Fundamentals and Applications
- Air enters a 12-m-long, 5-cm-diameter adiabatic duct at V1 = 70 m/s, T1 = 500 K, and P1 = 300 kPa. The average friction factor for the duct is estimated to be 0.023. Determine the Mach number at the duct exit, the exit velocity, and the mass flow rate of air.arrow_forwardAir at 26 psia, 320°F, and Mach number Ma = 0.7 flows through a duct. Calculate the velocity and the stagnation pressure, temperat and density of air. The properties of air are R = 0.06855 Btu/lbm-R = 0.3704 psia-ft3/lbm-R and k=1.4. The velocity of air is ft/s. The stagnation temperature of air is The stagnation pressure of air is The stagnation density of air is R. psia. | lbm/ft³.arrow_forwardAir enters a 5.5-cm-diameter adiabatic duct with inlet conditions of Ma1 = 2.2, T1 = 250 K, and P1 = 60 kPa, and exits at a Mach number of Ma2 = 1.8. Taking the average friction factor to be 0.03, determine the velocity, temperature, and pressure at the exit.arrow_forward
- I need the answer as soon as possiblearrow_forwardFor steady isentropic flow of perfect gas in constant area duct, the change of gas velocity to the sound speed relation can be given by dv=y (d_de) C dv dT dp Р T dp dT р T Y dv C O = +arrow_forwardIs it possible to accelerate a fluid to supersonic velocities with a velocity other than the sonic velocity at the throat? Explainarrow_forward
- Air is cooled as it flows through a 30-cm-diameter duct. The inlet conditions are Ma1 = 1.2, T01 = 350 K, and P01 = 240 kPa and the exit Mach number is Ma2 = 2.0. Disregarding frictional effects, determine the rate of cooling of air.arrow_forwardRead the question carefully and give me right solution according to the question. If you don't know the solution please leave it. In the piping system assume the air enters the duct at Ma1 = 0.4. The average friction factor for the duct is estimated to be 0.021. If the Mach number at the duct exit is 0.8, and the temperature of cooling the slurry should be >40°C at the duct exit. Determine the length and exit temperature of the duct and if these parameters are suitable for this application.arrow_forwardConsider supersonic Fanno flow that is decelerated to sonic velocity (Ma = 1) at the duct exit as a result of frictional effects. If the duct length is increased further, will the flow at the duct exit be supersonic, subsonic, or remain sonic? Will the mass flow rate of the fluid increase, decrease, or remain constant as a result of increasing the duct length?arrow_forward
- For steady isentropic flow of perfect gas in constant area duct, the change of gas velocity to the sound speed relation can be given byarrow_forwardWhat is the effect of friction on the entropy of the fluid during Fanno flow?arrow_forward(b) Air flows through a cylindrical duct at a rate of 2.3 kg/s. Friction between air and the duct and friction within air can be neglected. The diameter of the duct is 10cm and the air temperature and pressure at the inlet are T₁ 450 K and P₁ = 200 kPa. If the Mach number at the exit is Ma2 determine the rate of heat transfer and the pressure difference across the duct. The constant pressure specific heat of air is cp = 1.005 kJ/kg-K. The gas constant of air is R = 0.287 kJ/kg-K and assume k = 1.4. -arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY