Look at the room lights through one of the polarizing filters provided
Describe how the filter affects what you see. Does rotating the filter have an affect?
The changes made by the filter in the view.
Explanation of Solution
Introduction:
The polarized light is the one that have waves which vibrates only in one phase. A un-polarized can be transformed into a polarized light by using a polarizing filter. The process is called polarization.
When the room light are look through first polarizing filter they appear to be dimmer and their brightness is reduced by some amount because about half of the light is blocked as it passed through the filter. But at the same time the shape and dimension of the image is not distorted.
The rotation of filter will change the amount of polarized light passing through the filter. Because the filter will allow only light that is polarized in the direction perpendicular to the reflected light.
Conclusion:
Therefore, the room light are look through first polarizing filter they appear to be dimmer.
Want to see more full solutions like this?
Chapter 11 Solutions
Tutorials in Introductory Physics
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Biology (11th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- Learning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. Figure 2 of 2 ,00 10 XTA…arrow_forwardLearning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. Figure 4 of 4 20 Polarizer 2…arrow_forwardLearning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. A linear polarizing filter,…arrow_forward
- A powerful AM radio station that has a peak output power of 115 kW emits energy upward and outward but not downward so that it radiates uniformly across a hemispherical region as shown in the figure. Wave fronts Antenna What is the maximum electric field amplitude of a signal that is received 87 km from the station? Emax N/Carrow_forwardhw 5arrow_forwardUnpolarized light passes through two Polaroid sheets. The transmission axis of the analyzer makes an angle of 53.0 with the axis of the polarizer. (a) What fraction of the original unpolarized light is transmitted through the analyzer? (b) What fraction of the original light is absorbed by the analyzer?arrow_forward
- Certain sunglasses use a polarizing material to reduce the intensity of light reflected as glare front water or automobile windshields. What orientation should the polarizing filters haw to be most effective? (a) The polarizers should absorb light with its electric field horizontal. (b) The polarizers should absorb light with its electric field vertical. (c) The polarizers should absorb both horizontal and vertical electric fields. (d) The polarizers should not absorb either horizontal or vertical electric fields.arrow_forwardYou use a sequence of ideal polarizing filters, each with its axis making the same angle with the axis of the previous filter, to rotate the plane of polarization of a polarized light beam by a total of 45.0. You wish to have an intensity reduction no larger than 10.0%. (a) How many polarizers do you need to achieve your goal? (b) What is the angle between adjacent polarizers?arrow_forwardIf plane polarized light is sent through two polarizers, the first at 45 to the original plane of polarization and the second at 90 to the original plane of polarization, what fraction of the original polarized intensity passes through the last polarizer? (a) 0 (b) 14 (c) 12 (d) 18 (e) 110arrow_forward
- Suppose you are facing a tall makeup mirror on a vertical wall. Fluorescent tubes framing the mirror carry a clockwise electric current. (i) What is the direction of the magnetic field created by that current at the center of the mirror? (a) left (b) right (c) horizontally toward you (d) horizontally away from you (e) no direction because the field has zero magnitude (ii) What is the direction of the field the current creates at a point on the wall outside the frame to the right? Choose from the same possibilities as in part (i).arrow_forwardExplain why light is referred to as electromagnetic radiation.arrow_forwardPlease provide correct answer with detailed explanation. Will rate up for good and down for badarrow_forward
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning