
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.3, Problem 3dT
To determine
To Discuss: The interference pattern with four and five slits.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Question 3 of 17
L
X
L
L
T
0.5/
In the figure above, three uniform thin rods, each of length L, form
an inverted U. The vertical rods each have a mass m; the horizontal
rod has a mass 3m.
NOTE: Express your answer in terms of the variables given.
(a) What is the x coordinate of the system's center of mass?
xcom
L
2
(b) What is the y coordinate of the system's center of mass?
Ycom
45
L
X
Q Search
MD
bp
N
Sketch the harmonic on graphing paper.
Exercise 1:
(a) Using the explicit formulae derived in the lectures for the (2j+1) × (2j + 1) repre-
sentation matrices Dm'm, (J/h), derive the 3 × 3 matrices corresponding to the case
j = 1.
(b) Verify that they satisfy the so(3) Lie algebra commutation relation:
[D(Î₁/ħ), D(Î₂/h)]m'm₁ = iƊm'm² (Ĵ3/h).
(c) Prove the identity
3
Dm'm,(β) = Σ (D(Ρ)D(Ρ))m'¡m; ·
i=1
Chapter 11 Solutions
Tutorials in Introductory Physics
Ch. 11.1 - Prob. 1TCh. 11.1 - Prob. 2aTCh. 11.1 - Prob. 2bTCh. 11.1 - Prob. 2cTCh. 11.1 - The representation that we have been using...Ch. 11.1 - Prob. 2eTCh. 11.1 - Prob. 2gTCh. 11.1 - Each of the photographs at right shows a part of a...Ch. 11.1 - Obtain a piece of paper and a transparency with...Ch. 11.2 - Obtain a pan of water and form a barrier in it...
Ch. 11.2 - Prob. 2aTCh. 11.2 - Obtain an enlargement of the diagram at right that...Ch. 11.2 - Suppose that the width of one of the slits were...Ch. 11.2 - Red light from a distant point source is incident...Ch. 11.2 - Compare the situation in part II (in which a...Ch. 11.2 - For each of the lettered points, determine D (in...Ch. 11.2 - Suppose that one of the slits were covered. At...Ch. 11.2 - The pattern produced by red light passing through...Ch. 11.2 - Consider point B, the first maximum to the left of...Ch. 11.3 - Red light from a distant point source is incident...Ch. 11.3 - In a previous homework, you found an expression...Ch. 11.3 - Suppose that the screen were semicircular, as...Ch. 11.3 - Consider a point M on the distant screen where...Ch. 11.3 - Consider a point N on the screen where there is a...Ch. 11.3 - Obtain a set of transparencies of sinusoidal...Ch. 11.3 - Suppose that coherent red light were incident on a...Ch. 11.3 - Generalize your results from the 2-slit, 3-slit,...Ch. 11.3 - Coherent red light is incident on a mask with two...Ch. 11.3 - Prob. 3dTCh. 11.4 - Red light from a distant point source is incident...Ch. 11.4 - Suppose that point X marks the location of the...Ch. 11.4 - Suppose that only slit 1 is uncovered, and all...Ch. 11.4 - Show how you could group all ten slits into five...Ch. 11.4 - Suppose that the number of slits is doubled and...Ch. 11.4 - If we continued to add slits in this way (i.e.,...Ch. 11.4 - How is this pattern different from what you would...Ch. 11.4 - Consider the following dialogue: Student 1: "l...Ch. 11.4 - The photograph at right shows the diffraction...Ch. 11.4 - The photograph at right shows the diffraction...Ch. 11.4 - Describe what you would see on the screen if the...Ch. 11.4 - If a diffraction pattern has several minima (like...Ch. 11.4 - In part A, you drew a diagram that showed how find...Ch. 11.4 - Use the model that we have developed to write an...Ch. 11.5 - The minima that occur in the case of a single slit...Ch. 11.5 - Consider the following dispute between two physics...Ch. 11.5 - A second slit, identical in size to the first, is...Ch. 11.5 - Both slits are now uncovered. For what angles will...Ch. 11.5 - Suppose that the width of both slit, a, were...Ch. 11.5 - Suppose instead that the distance between the...Ch. 11.5 - The four graphs from part C that show relative...Ch. 11.5 - Consider the relative intensity graph shown at...Ch. 11.5 - Consider the following comment made by a student:...Ch. 11.5 - You may have already noticed that the maxima are...Ch. 11.6 - Prob. 1TCh. 11.6 - Prob. 2aTCh. 11.6 - When comparing two materials of different indices...Ch. 11.6 - Consider light incident on a thin soap film, as...Ch. 11.6 - Light of frequency f=7.51014Hz is incident on the...Ch. 11.6 - Suppose that an observer were located on the left...Ch. 11.6 - Observer A is looking at the part of the film that...Ch. 11.6 - Observer B is looking at the part of the film that...Ch. 11.6 - Observer C is looking at the thinnest part of the...Ch. 11.6 - Describe the appearance of the film as a whole.Ch. 11.6 - What are the three smallest film thickness for...Ch. 11.6 - The thickness of the film is 1650 nm at the bottom...Ch. 11.7 - Look at the room lights through one of the...Ch. 11.7 - Hold a second polarizing filter in front of the...Ch. 11.7 - Do the room lights produce polarized light?...Ch. 11.7 - Suppose that you had two marked polarizers (i.e.,...Ch. 11.7 - Suppose that you had a polarizer with its...Ch. 11.7 - Prob. 2dTCh. 11.7 - An observer is looking at a light source through...Ch. 11.7 - Consider a beam of unpolarized light that is...
Knowledge Booster
Similar questions
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning