
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1.16, Problem 1MP
- Show that it is possible to stack a pile of identical books so that the top book is as far as you like to the right of the bottom book. Start at the top and each time place the pile already completed on top of another book so that the pile is just at the point of tipping. (In practice, of course, you can’t let them overhang quite this much without having the stack topple. Try it with a deck of cards.) Find the distance from the right-hand end of each book to the right-hand end of the one beneath it. To find a general formula for this distance, consider the three forces acting on book n, and write the equation for the torque about its right-hand end. Show that the sum of these setbacks is a divergent series (proportional to the harmonic series). [See "Leaning Tower of The Physical Reviews," Am. J. Phys. 27, 121-122 (1959).]
- By computer, find the sum of N terms of the harmonic series with N = 25, 100, 200, 1000, 106, 10100.
- From the diagram in (a), you can that with 5 books (count down from the top) the top book is completely to the right of the bottom book, that is, the overhang is slightly over one book. Use your series in (a) to verify this. Then using parts (a) and (b) and a computer as needed, find the number of books needed for an overhang of 2 books, 3 books, 10 books, 100 books.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Tri-County Utilities, Inc., supplies natural gas to customers in a three-county area. The company purchases natural gas from two companies: Southern Gas and Northwest Gas.
Demand forecasts for the coming winter season are as follows: Hamilton County, 400 units; Butler County, 200 units; and Clermont County, 300 units. Contracts to provide the following quantities have been written: Southern Gas, 500 units; and Northwest Gas, 400 units. Distribution costs for the counties vary, depending upon the location of the suppliers. The distribution costs per unit (in thousands of dollars)
are as follows.
From
To
Hamilton Butler
Clermont
Southern Gas
10
20
15
Northwest Gas
12
15
18
(a) Develop a network representation of this problem. (Submit a file with a maximum size of 1 MB.)
Choose File No file chosen
Assignment 3 graph.docx
Score: 1 out of 1
Comment:
(b) Develop a linear programming model that can be used to determine the plan that will minimize total distribution costs (in thousands of…
Use the method of undetermined coefficients to solve the given nonhomogeneous system.
dx
dt
=
2x + 3y − 8
dy
dt
=
−x − 2y + 6
X(t) =
As discussed in Section 8.3, the Markowitz model uses the variance of the portfolio as the measure of risk. However, variance includes deviations both below and above the mean return. Semivariance includes only deviations below the mean and is considered by many to be a better measure of risk.
(a)
Develop a model that minimizes semivariance for the Hauck Financial data given in the file HauckData with a required return of 10%.
Assume
that the five planning scenarios in the Hauck Financial Services model are equally likely to occur. Hint: Modify model (8.10)–(8.19). Define a variable ds for each scenario and let
ds ≥ R − Rs
with
ds ≥ 0.
Then make the objective function:
Min
1
5
5
s = 1
ds2.
Let
FS = proportion of portfolio invested in the foreign stock mutual fund
IB = proportion of portfolio invested in the intermediate-term bond fund
LG = proportion of portfolio invested in the large-cap growth fund
LV = proportion of portfolio invested in the large-cap value fund…
Chapter 1 Solutions
Mathematical Methods in the Physical Sciences
Ch. 1.1 - In the bouncing ball example above, find the...Ch. 1.1 - Derive the formula (1.4) for the sum Sn of the...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - Use equation (1.8) to find the fractions that are...
Ch. 1.1 - Use equation (1.8) to find the fractions that are...Ch. 1.1 - In a water purification process, one-nth of the...Ch. 1.1 - If you invest a dollar at 6% interest compounded...Ch. 1.1 - A computer program gives the result 1/6 for the...Ch. 1.1 - Connect the midpoints of the sides of an...Ch. 1.1 - Suppose a large number of particles are bouncing...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.2 - In the following problems, find the limit of the...Ch. 1.4 - For the following series, write formulas for the...Ch. 1.4 - For the following, write formulas for the...Ch. 1.4 - For the following series, write formulas for the...Ch. 1.4 - For the following series, write formulas for the...Ch. 1.4 - For the following series, write formulas for the...Ch. 1.4 - For the following series, write formulas for the...Ch. 1.4 - For the following series, write formulas for the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Use the preliminary test to decide whether the...Ch. 1.5 - Using (4.6), give a proof of the preliminary test....Ch. 1.6 - Show that n! 2 for all n 3. Hint: Write out a...Ch. 1.6 - Prove that the harmonic series n=11/n is divergent...Ch. 1.6 - Prove the convergence n=11/n2 by grouping terms...Ch. 1.6 - Use the comparison test to prove the convergence...Ch. 1.6 - Test the following series for convergence using...Ch. 1.6 - There are 9 one-digit numbers (1 to 9), 90...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to find whether the...Ch. 1.6 - Use the integral test to prove the following...Ch. 1.6 - In testing 1/n2 for convergence, a student...Ch. 1.6 - Use the integral test to show that n=0en2...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Use the ratio test to find whether the following...Ch. 1.6 - Prove the ratio test. Hint: If an+1/an1, take ...Ch. 1.6 - Use the special comparison test to find whether...Ch. 1.6 - Use the special comparison test to find whether...Ch. 1.6 - Use the special comparison test to find whether...Ch. 1.6 - Use the special comparison test to find whether...Ch. 1.6 - Use the special comparison test to find whether...Ch. 1.6 - Use the special comparison test to find whether...Ch. 1.6 - Prove the special comparison test. Hint (part a):...Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Test the following series for convergence....Ch. 1.7 - Prove that an absolutely convergent series n=1an...Ch. 1.7 - The following alternating series are divergent...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.9 - Test the following series for convergence or...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - Find the interval of convergence of each of the...Ch. 1.10 - The following series are not power series, but you...Ch. 1.10 - The following series are not power series, but you...Ch. 1.10 - The following series are not power series, but you...Ch. 1.10 - The following series are not power series, but you...Ch. 1.10 - The following series are not power series, but you...Ch. 1.10 - The following series are not power series, but you...Ch. 1.10 - The following series are not power series, but you...Ch. 1.12 - By the method used to obtain (12.5) [which is the...Ch. 1.13 - Use the ratio test to show that a binomial series...Ch. 1.13 - Show that the binomial coefficients 1n=(1)n.Ch. 1.13 - Show that if p is a positive integer, then pn=0...Ch. 1.13 - Write the Maclaurin series for 1/1+x in form...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Using the methods of this section: Find the first...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - In cos x Hints: Method l: Write cos x = 1+(cos...Ch. 1.13 - Find the first few terms of the Maclaurin series...Ch. 1.13 - Using method F above, find the first few terms of...Ch. 1.13 - Using method F above, find the first few terms of...Ch. 1.13 - Using method F above, find the first few terms of...Ch. 1.13 - Using method F above, find the first few terms of...Ch. 1.13 - Using method F above, find the first few terms of...Ch. 1.13 - Using method F above, find the first few terms of...Ch. 1.14 - Prove theorem (14.3). Hint: Group the terms in the...Ch. 1.14 - Using computer or tables (or Chapter 7, Section...Ch. 1.14 - In Problem 3 to 7, assume that the Maclaurin...Ch. 1.14 - In Problem 3 to 7, assume that the Maclaurin...Ch. 1.14 - In Problem 3 to 7, assume that the Maclaurin...Ch. 1.14 - In Problem 3 to 7, assume that the Maclaurin...Ch. 1.14 - In Problem 3 to 7, assume that the Maclaurin...Ch. 1.14 - Estimate the error if n=1xn/n3 is approximated by...Ch. 1.14 - Consider the series in Problem 4.6 and show that...Ch. 1.14 - Show that the interval of convergence of the...Ch. 1.14 - Show that the Maclaurin series for sin x converges...Ch. 1.14 - Show as in Problem 11 that the Maclaurin series...Ch. 1.14 - Show that Maclaurin for (1+x)p converges to (1+x)p...Ch. 1.15 - In problems 1 to 4, use power series to evaluate...Ch. 1.15 - In problems 1 to 4, use power series to evaluate...Ch. 1.15 - In problems 1 to 4, use power series to evaluate...Ch. 1.15 - In problems 1 to 4, use power series to evaluate...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Use Maclaurin series to evaluate each of the...Ch. 1.15 - Find a two term aproximation for each of the...Ch. 1.15 - Find a two term aproximation for each of the...Ch. 1.15 - Find the sum of each of the following series by...Ch. 1.15 - Find the sum of each of the following series by...Ch. 1.15 - Find the sum of each of the following series by...Ch. 1.15 - Find the sum of each of the following series by...Ch. 1.15 - By computer or tables, find the exact sum of each...Ch. 1.15 - By computer, find a numerical approximation for...Ch. 1.15 - The series n=11/n8,s1, is called the Riemann Zeta...Ch. 1.15 - Find the following limits using Maclaurin series...Ch. 1.15 - Evaluate the following indeterminate forms by...Ch. 1.15 - In general, we do not expect Maclaurin series to...Ch. 1.15 - Find the values of several derivatives of...Ch. 1.15 - The velocity of electrons from a high energy...Ch. 1.15 - The energy of an electron at speed in special...Ch. 1.15 - The figure shows a heavy weight suspended by a...Ch. 1.15 - Prob. 30PCh. 1.15 - A tall tower of circular cross section is...Ch. 1.15 - Show that the doubling time (time for your money...Ch. 1.15 - If you are at the top Of a tower Of height h above...Ch. 1.16 - Show that it is possible to stack a pile of...Ch. 1.16 - The picture is a mobile constructed of dowels (or...Ch. 1.16 - Show that n=21/n3/2 is convergent. What is wrong...Ch. 1.16 - Test for convergence: n=12nn!Ch. 1.16 - Test for convergence: n=2(n1)21+n2Ch. 1.16 - Test for convergence: n=2n1(n+1)21Ch. 1.16 - Test for convergence: n=21n1n(n)3Ch. 1.16 - Test for convergence: n=22n3n42Ch. 1.16 - Find the interval of convergence, including...Ch. 1.16 - Find the interval of convergence, including...Ch. 1.16 - Find the interval of convergence, including...Ch. 1.16 - Find the interval of convergence, including...Ch. 1.16 - Find the interval of convergence, including...Ch. 1.16 - Find the Maclaurin series for the folliwing...Ch. 1.16 - Find the Maclaurin series for the folliwing...Ch. 1.16 - Find the Maclaurin series for the folliwing...Ch. 1.16 - Find the Maclaurin series for the folliwing...Ch. 1.16 - Find the Maclaurin series for the folliwing...Ch. 1.16 - Find the few terms of the Taylor series for the...Ch. 1.16 - Find the few terms of the Taylor series for the...Ch. 1.16 - Find the few terms of the Taylor series for the...Ch. 1.16 - Use the series you know to show that:...Ch. 1.16 - Use the series you know to show that:...Ch. 1.16 - Use the series you know to show that:...Ch. 1.16 - Evaluate the limit limx0x2/1ncosx by series (in...Ch. 1.16 - Use Maclaurin to do Problem 26 to 29 and check...Ch. 1.16 - Use Maclaurin to do Problem 26 to 29 and check...Ch. 1.16 - Use Maclaurin to do Problem 26 to 29 and check...Ch. 1.16 - Use Maclaurin to do Problem 26 to 29 and check...Ch. 1.16 - It is clear that you (or your computer) cant find...Ch. 1.16 - As in Problem 30, for each of the following...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Evaluate the cylindrical coordinate integrals in Exercises 23−28.
23.
University Calculus: Early Transcendentals (4th Edition)
Logarithmic differentiation Use logarithmic differentiation to evaluate f(x). 61. f(x)=(x+1)10(2x4)8
Calculus: Early Transcendentals (2nd Edition)
Student Ages The mean age of all 2550 students at a small college is 22.8 years with a standard deviation is 3....
Introductory Statistics
Stating the Null and Alternative Hypotheses In Exercises 25–30, write the claim as a mathematical statement. St...
Elementary Statistics: Picturing the World (7th Edition)
76. Dew Point and Altitude The dew point decreases as altitude increases. If the dew point on the ground is 80°...
College Algebra with Modeling & Visualization (5th Edition)
1. Verifying Requirements In the largest clinical trial ever conducted. 401,974 children were randomly assigned...
Elementary Statistics (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Calculus lll May I please have the blank lines completed, and final statement defined as a result? Thank you for the support!arrow_forwardFor each month of the year, Taylor collected the average high temperatures in Jackson, Mississippi. He used the data to create the histogram shown. Which set of data did he use to create the histogram? A 55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92\ 55,\ 60,\ 64,\ 72,\ 73,\ 75,\ 77,\ 81,\ 83,\ 91,\ 91,\ 92 55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92 B 55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91\ 55,\ 57,\ 60,\ 65,\ 70,\ 71,\ 78,\ 79,\ 85,\ 86,\ 88,\ 91 55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91 C 55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93\ 55,\ 60,\ 63,\ 64,\ 65,\ 71,\ 83,\ 87,\ 88,\ 88,\ 89,\ 93 55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93 D 55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91\ 55,\ 58,\ 60,\ 66,\ 68,\ 75,\ 77,\ 82,\ 86,\ 89,\ 91,\ 91 55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91arrow_forwardIn this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward
- Problem 4. Margrabe formula and the Greeks (20 pts) In the homework, we determined the Margrabe formula for the price of an option allowing you to swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility σ and correlation p, the formula was given by Fo=yo (d+)-x0Þ(d_), where In (±² Ꭲ d+ õ√T and σ = σ√√√2(1 - p). дго (a) We want to determine a "Greek" for ỡ on the option: find a formula for θα (b) Is дго θα positive or negative? (c) We consider a situation in which the correlation p between the two stocks increases: what can you say about the price Fo? (d) Assume that yo< xo and p = 1. What is the price of the option?arrow_forwardThe Course Name Real Analysis please Solve questions by Real Analysisarrow_forwardWe consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2arrow_forward
- Question 1. Your manager asks you to explain why the Black-Scholes model may be inappro- priate for pricing options in practice. Give one reason that would substantiate this claim? Question 2. We consider stock #1 and stock #2 in the model of Problem 2. Your manager asks you to pick only one of them to invest in based on the model provided. Which one do you choose and why ? Question 3. Let (St) to be an asset modeled by the Black-Scholes SDE. Let Ft be the price at time t of a European put with maturity T and strike price K. Then, the discounted option price process (ert Ft) t20 is a martingale. True or False? (Explain your answer.) Question 4. You are considering pricing an American put option using a Black-Scholes model for the underlying stock. An explicit formula for the price doesn't exist. In just a few words (no more than 2 sentences), explain how you would proceed to price it. Question 5. We model a short rate with a Ho-Lee model drt = ln(1+t) dt +2dWt. Then the interest rate…arrow_forwardIn this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forward
- The managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c. Question content area bottom Part 1 a. Develop a simple linear regression model between billable hours and overhead costs. Overhead Costsequals=212495.2212495.2plus+left parenthesis 42.4857 right parenthesis42.485742.4857times×Billable Hours (Round the constant to one decimal place as needed. Round the coefficient to four decimal places as needed. Do not include the $ symbol in your answers.) Part 2 b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm? Interpret the fixed term, b 0b0, if appropriate. Choose the correct answer below. A. The value of b 0b0 is the predicted billable hours for an overhead cost of 0 dollars. B. It is not appropriate to interpret b 0b0, because its value…arrow_forward3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardWrite the equation of the trigonometric function shown in the graph. LO 5 4 3 2 1 y -5 -5 4 8 8 500 -1 -2 -3 -4 -5 x 5 15л 5л 25л 15л 35π 5л 4 8 2 8 4 8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University



Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra - Pythagorean Theorem; Author: yaymath;https://www.youtube.com/watch?v=D_y_owf1WsI;License: Standard YouTube License, CC-BY
The Organic Chemistry Tutor; Author: Pythagorean Theorem Explained!;https://www.youtube.com/watch?v=B0G35RkmwSw;License: Standard Youtube License