Mathematical Methods in the Physical Sciences
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 11.5, Problem 5P

Use (5.4) to show that

(a) Γ 1 2 n Γ 1 2 + n = ( 1 ) n π if n = a positive integer;

(b) ( z ! ) ( z ) ! = π z / sin π z , where z is not necessarily an integer; see comment after equation (3.3).

Blurred answer
Students have asked these similar questions
Please solve the following Probability and Statistics problems: (show all work)    Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?
Please solve the following Statistics and Probability Problem (show all work) :    The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?
2) Compute the following anti-derivative. √1x4 dx

Chapter 11 Solutions

Mathematical Methods in the Physical Sciences

Ch. 11.3 - Express each of the following integrals as a ...Ch. 11.3 - Express each of the following integrals as a ...Ch. 11.3 - Express each of the following integrals as a ...Ch. 11.3 - Express each of the following integrals as a ...Ch. 11.3 - Express each of the following integrals as a ...Ch. 11.3 - A particle starting from rest at x=1 moves along...Ch. 11.3 - Express as a function 01ln1xp1dx, Hint: See...Ch. 11.5 - Using (5.3) with (3.4) and (4.1), find...Ch. 11.5 - Without computer or tables, but just using facts...Ch. 11.5 - In Chapter 1, equations(13.5)and (13.6), we...Ch. 11.5 - Prove that, for positive integral n:...Ch. 11.5 - Use (5.4) to show that (a) 12n12+n=(1)n if n= a...Ch. 11.5 - Prove...Ch. 11.5 - In the Table of Laplace Transforms (end of Chapter...Ch. 11.6 - Prove that B(p,q)=B(q,p). Hint: Put x=1y in...Ch. 11.6 - Prove equation (6.5) (6.5)B(p,q)=0yp1dy(1+y)p+q.Ch. 11.6 - Show that for integral n, m...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Express the following integrals as B functions,...Ch. 11.7 - Prove B(n,n)=Bn,12/22n1. Hint: In (6.4), use the...Ch. 11.7 - Computer plot the graph of x3+y3=8. Write the...Ch. 11.7 - Computer plot the graph of x3+y3=8. Write the...Ch. 11.7 - Computer plot the graph of x3+y3=8. Write the...Ch. 11.7 - Computer plot the graph of x3+y3=8. Write the...Ch. 11.8 - Complete the pendulum problem to find the period...Ch. 11.8 - Suppose that a car with a door open at right...Ch. 11.8 - The figure is part of a cycloid with parametric...Ch. 11.9 - Sketch or computer plot a graph of the function...Ch. 11.9 - Verify equations (9.2),(9.3), and (9.4). Hint:...Ch. 11.9 - Prove that erf(x) is an odd function of x. Hint:...Ch. 11.9 - Show that ey2/2dy=2 (a) by using (9.5) and (9.2a);...Ch. 11.9 - Replace x by $i x in(9.1)andlet t = i u$ to show...Ch. 11.9 - Assuming that x is real, show the following...Ch. 11.10 - Carry through the algebra to get equation (10.4).Ch. 11.10 - The integral xtp1etdt=(p,x) is called an...Ch. 11.10 - Express the complementary error function erfc (x)...Ch. 11.10 - En(x)=1exttndt,n=0,1,2,, and Ei(x)=xettdt, and...Ch. 11.10 - 2(a) Express E1(x) as an incomplete function. (b)...Ch. 11.10 - The logarithmic integral is li(x)=0xdtlnt. Express...Ch. 11.10 - Computer plot graphs of (a) En(x) for n=0 to 10...Ch. 11.11 - Use the term 1/(12p) in (11.5) to show that the...Ch. 11.11 - (a) To see the results in Problem 1 graphically,...Ch. 11.11 - In statistical mechanics, we frequently use the...Ch. 11.11 - Use Stirlings formula to evaluate...Ch. 11.11 - Use Stirlings formula to evaluate limnn+32n(n+1).Ch. 11.11 - Use equations (3.4) and (11.5) to show that...Ch. 11.11 - The function (p)=ddpln(p) is called the digamma...Ch. 11.11 - Sketch or computer plot a graph of y=lnx for x0....Ch. 11.11 - The following expression occurs in statistical...Ch. 11.11 - Use Stirlings formula to find limn(n!)1/n/n.Ch. 11.12 - Expand the integrands of K and E [see ( 12.3 )] in...Ch. 11.12 - Use a graph of sin2 and the text discussion just...Ch. 11.12 - Computer plot graphs of K(k) and E(k) in (12.3)...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - In Problems 4 to 13, identify each of the...Ch. 11.12 - Find the circumference of the ellipse 4x2+9y2=36.Ch. 11.12 - Find the length of arc of the ellipse x2+y2/4=1...Ch. 11.12 - Find the are length of one arch of y=sinx.Ch. 11.12 - Write the integral in equation (12.7) as an...Ch. 11.12 - Computer plot graphs of sn u, cn u, and dn u, for...Ch. 11.12 - If u=ln(sec+tan), then is a function of u called...Ch. 11.12 - Show that for k=0:u=F(,0)=,snu=sinu,cnu=cosu,dnu=1...Ch. 11.12 - Show that the four answers given in Section 1 for...Ch. 11.12 - In the pendulum problem, =sing/lt is an...Ch. 11.12 - A uniform solid sphere of density 12 is floating...Ch. 11.12 - Sometimes you may find the notation F(,k) in...Ch. 11.12 - As in Problem $24,$ show that...Ch. 11.13 - Show that $ 0ymdy(1+y)n+1=1(nm)C(n,m) $ for...Ch. 11.13 - Show that B(m,n)B(m+n,k)=B(n,k)B(n+k,m).Ch. 11.13 - Use Stirlings formula to show that...Ch. 11.13 - Verify the asymptotic series 0etdt(1+xt)~ (1)nn!xn...Ch. 11.13 - Use gamma and beta function formulas to show that...Ch. 11.13 - Generalize Problem 5 to show that...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Identify each of the following integrals or...Ch. 11.13 - Find an expression for the exact value of (55.5)...Ch. 11.13 - Using your result in Problem 23 and equation...Ch. 11.13 - As in problems 23 and 24, find expressions for the...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Ring Examples (Abstract Algebra); Author: Socratica;https://www.youtube.com/watch?v=_RTHvweHlhE;License: Standard YouTube License, CC-BY
Definition of a Ring and Examples of Rings; Author: The Math Sorcerer;https://www.youtube.com/watch?v=8yItsdvmy3c;License: Standard YouTube License, CC-BY