DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
8th Edition
ISBN: 9781260521337
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.5, Problem 20E
To determine
Other links if there is a link between every two computer centers and the cost is minimized.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A major hotel chain is constructing a new resort hotel complex in Greenbranch Springs, WestVirginia. The resort is in a heavily wooded area, and the developers want to preserve as much ofthe natural beauty as possible. To do so, the developers want to connect all the various facilitiesin the complex with a combination walking–riding path that will minimize the amount of pathwaythat will have to be cut through the woods. The following network shows possible connectingpaths and corresponding distances (in yards) between the facilities: Determine the path that will connect all the facilities with the minimum amount of constructionand indicate the total length of the pathway.
There are two alternative Plans for operating a high-speed inter-city rail service. In Plan I, the service connects city A with city B through city C where the rail makes a stop to load or unload passengers. The rail transportation system is assumed to be perfectly symmetrical with respect to direction of travel.
PLAN I
The link travel times are 2 hours between each pair of cities in both directions. The time it takes to service the train at each node is 0.5 hours. In the alternative Plan II, the train company considers to stop servicing the smaller city C, in order to provide a better level of service for the users in the city A and city B.
PLAN II
According to Plan II, the travel time between the major cities A and B in both directions will be reduced to 3.5 hours. The time it takes to service the train in both city A and city B is still 0.5 hours.
Q2 (A)
Calculate the train-cycle for Plan I and Plan II.
Q2 (B)
How many trains do you need to operate 12 trains/day uniformly…
A cellular telephone company is expanding into a new era. Relay towers are necessary to provide wireless telephone coverage to the different areas of the city. A grid is superimposed on a map of the city to help determine where the towers should be located. The grid consists of 8 areas labeled A through H. Six possible tower locations (numbered 1 to 6) have been identified, and each location could serve several areas. The company would like to minimize the number of towers required to cover all the areas. The table below shows which areas are covered by each tower location.
Tower Locations
1
2
3
4
5
6
Areas Covered
A, B, D
B, C, G
C, D, E, F
E, F, H
E, G, H
A, D, F
Formulate and solve the binary programming model using Excel. Determine the following:
a) Optimal number of towers needed to cover all areas.
b) How many set covering constraints are in the model?
c) In optimal solution, which tower locations are selected?
d) In optimal solution,…
Chapter 11 Solutions
DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
Ch. 11.1 - Prob. 1ECh. 11.1 - Vhich of these graphs are trees?Ch. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Prob. 9ECh. 11.1 - Prob. 10E
Ch. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Let G he a simple graph with n vertices. Show that...Ch. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - A chain letter starts when a person sends a letter...Ch. 11.1 - A chain letter starts with a person sending a...Ch. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Letnbe a power of 2. Show thatnnumbers can be...Ch. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Draw the first seven rooted Fibonacci trees.Ch. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Show that the average depth of a leaf in a binary...Ch. 11.2 - Build a binary search tree for the...Ch. 11.2 - Build a binary search tree for the words oenology,...Ch. 11.2 - How many comparisons are needed to locate or to...Ch. 11.2 - How many comparisons are needed to locate or to...Ch. 11.2 - Using alphabetical order, construct a binary...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - One of four coins may be counterfeit. If it is...Ch. 11.2 - Find the least number of comparisons needed to...Ch. 11.2 - Prob. 12ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 21ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 23ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 25ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Suppose thatmis a positive integer with m>2An...Ch. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Suppose that m is a positive integer withm= 2. An...Ch. 11.2 - Suppose thatmis a positive integer withm= 2....Ch. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 36ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 39ECh. 11.2 - Suppose that m is a positive integer withm= 2. An...Ch. 11.2 - Prob. 41ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Suppose that the vertex with the largest address...Ch. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - a) Represent the compound propositionsandusing...Ch. 11.3 - a) Represent(AB)(A(BA))using an ordered rooted...Ch. 11.3 - In how many ways can the stringbe fully...Ch. 11.3 - In how many ways can the stringbe fully...Ch. 11.3 - Draw the ordered rooted tree corresponding to each...Ch. 11.3 - What is the value of each of these prefix...Ch. 11.3 - What is the value of each of these postfix...Ch. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Show that any well-formed formula in prefix...Ch. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Prob. 34ECh. 11.4 - How many edges must be removed from a connected...Ch. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Describe the tree produced by breadth-first search...Ch. 11.4 - Prob. 23ECh. 11.4 - Explain how breadth-first search or depth-first...Ch. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Use backtracking to find a subset, if it exists,...Ch. 11.4 - Explain how backtracking can be used to find a...Ch. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - A spanning forest of a graphGis a forest that...Ch. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - A spanning forest of a graphGis a forest that...Ch. 11.4 - Prob. 37ECh. 11.4 - Prob. 38ECh. 11.4 - Prob. 39ECh. 11.4 - Prob. 40ECh. 11.4 - Prob. 41ECh. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Prob. 44ECh. 11.4 - Prob. 45ECh. 11.4 - Prob. 46ECh. 11.4 - Prob. 47ECh. 11.4 - Prob. 48ECh. 11.4 - Prob. 49ECh. 11.4 - Prob. 50ECh. 11.4 - Prob. 51ECh. 11.4 - Prob. 52ECh. 11.4 - Prob. 53ECh. 11.4 - Prob. 54ECh. 11.4 - Prob. 55ECh. 11.4 - Prob. 56ECh. 11.4 - Prob. 57ECh. 11.4 - Prob. 58ECh. 11.4 - Prob. 59ECh. 11.4 - Prob. 60ECh. 11.4 - Prob. 61ECh. 11.5 - The roads represented by this graph are all...Ch. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Express the algorithm devised in Exercise 22 in...Ch. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Prob. 28ECh. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.5 - Prob. 33ECh. 11.5 - Prob. 34ECh. 11.5 - Prob. 35ECh. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Prob. 5RQCh. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - a) What is a binary search tree? b) Describe an...Ch. 11 - Prob. 9RQCh. 11 - Prob. 10RQCh. 11 - a) Explain how to use preorder, inorder, and...Ch. 11 - Show that the number of comparisons used by a...Ch. 11 - a) Describe the Huffman coding algorithm for...Ch. 11 - Draw the game tree for nim if the starting...Ch. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - a) Explain how backtracking can be used to...Ch. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Show that a simple graph is a tree if and Only if...Ch. 11 - Prob. 2SECh. 11 - Prob. 3SECh. 11 - Prob. 4SECh. 11 - Prob. 5SECh. 11 - Prob. 6SECh. 11 - Prob. 7SECh. 11 - Prob. 8SECh. 11 - Prob. 9SECh. 11 - Prob. 10SECh. 11 - Prob. 11SECh. 11 - Prob. 12SECh. 11 - Prob. 13SECh. 11 - Prob. 14SECh. 11 - Prob. 15SECh. 11 - Prob. 16SECh. 11 - Prob. 17SECh. 11 - Prob. 18SECh. 11 - Prob. 19SECh. 11 - Prob. 20SECh. 11 - Prob. 21SECh. 11 - Prob. 22SECh. 11 - Prob. 23SECh. 11 - The listing of the vertices of an ordered rooted...Ch. 11 - The listing of the vertices of an ordered rooted...Ch. 11 - Prob. 26SECh. 11 - Prob. 27SECh. 11 - Prob. 28SECh. 11 - Prob. 29SECh. 11 - Show that if every circuit not passing through any...Ch. 11 - Prob. 31SECh. 11 - Prob. 32SECh. 11 - Prob. 33SECh. 11 - Prob. 34SECh. 11 - Prob. 35SECh. 11 - Prob. 36SECh. 11 - Prob. 37SECh. 11 - Prob. 38SECh. 11 - Prob. 39SECh. 11 - Prob. 40SECh. 11 - Prob. 41SECh. 11 - Prob. 42SECh. 11 - Prob. 43SECh. 11 - Prob. 44SECh. 11 - Prob. 45SECh. 11 - Show that a directed graphG= (V,E) has an...Ch. 11 - In this exercise we will develop an algorithm to...Ch. 11 - Prob. 1CPCh. 11 - Prob. 2CPCh. 11 - Prob. 3CPCh. 11 - Prob. 4CPCh. 11 - Prob. 5CPCh. 11 - Prob. 6CPCh. 11 - Prob. 7CPCh. 11 - Given an arithmetic expression in prefix form,...Ch. 11 - Prob. 9CPCh. 11 - Given the frequency of symbols, use Huffman coding...Ch. 11 - Given an initial position in the game of nim,...Ch. 11 - Prob. 12CPCh. 11 - Prob. 13CPCh. 11 - Prob. 14CPCh. 11 - Prob. 15CPCh. 11 - Prob. 16CPCh. 11 - Prob. 17CPCh. 11 - Prob. 18CPCh. 11 - Prob. 1CAECh. 11 - Prob. 2CAECh. 11 - Prob. 3CAECh. 11 - Prob. 4CAECh. 11 - Prob. 5CAECh. 11 - Prob. 6CAECh. 11 - Prob. 7CAECh. 11 - Prob. 8CAECh. 11 - Prob. 1WPCh. 11 - Prob. 2WPCh. 11 - Prob. 3WPCh. 11 - DefineAVL-trees(sometimes also known...Ch. 11 - Prob. 5WPCh. 11 - Prob. 6WPCh. 11 - Prob. 7WPCh. 11 - Prob. 8WPCh. 11 - Prob. 9WPCh. 11 - Prob. 10WPCh. 11 - Discuss the algorithms used in IP multicasting to...Ch. 11 - Prob. 12WPCh. 11 - Describe an algorithm based on depth-first search...Ch. 11 - Prob. 14WPCh. 11 - Prob. 15WPCh. 11 - Prob. 16WPCh. 11 - Prob. 17WPCh. 11 - Prob. 18WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Suppose the coal and steel industries form a closed economy. Every $1 produced by the coal industry requires $0.30 of coal and $0.70 of steel. Every $1 produced by steel requires $0.80 of coal and $0.20 of steel. Find the annual production (output) of coal and steel if the total annual production is $20 million.arrow_forwardIf during the following year it is predicted that each comedy skit will generate 30 thousand and each musical number 20 thousand, find the maximum income for the year. A television program director must schedule comedy skits and musical numbers for prime-time variety shows. Each comedy skit requires 2 hours of rehearsal time, costs 3000, and brings in 20,000 from the shows sponsors. Each musical number requires 1 hour of rehearsal time, costs 6000, and generates 12,000. If 250 hours are available for rehearsal and 600,000 is budgeted for comedy and music, how many segments of each type should be produced to maximize income? Find the maximum income.arrow_forward23. Consider a simple economy with just two industries: farming and manufacturing. Farming consumes 1/2 of the food and 1/3 of the manufactured goods. Manufacturing consumes 1/2 of the food and 2/3 of the manufactured goods. Assuming the economy is closed and in equilibrium, find the relative outputs of the farming and manufacturing industries.arrow_forward
- The pandemic brought a challenge in the educational system of our country. Schools have to offer of distance learning modality. Students will be kept responsible of their time for academic works at home thus, a student who choose asynchrounous distance learning has to budget his or her time to accomplish tasks efficiently. If a student has to spend 40 hours a week for academic tasks and he or she has x number of subjects represent the time a student has to allot for one subject.arrow_forwardThere are two alternative Plans for operating a high-speed inter-city rail service. In Plan I, the service connects city A with city B through city C where the rail makes a stop to load or unload passengers. The rail transportation system is assumed to be perfectly symmetrical with respect to direction of travel. The link travel times are 2 hours between each pair of cities in both directions. The time it takes to service the train at each node is 0.5 hours. In the alternative Plan II, the train company considers to stop servicing the smaller city C, in order to provide a better level of service for the users in the city A and city B. According to Plan II, the travel time between the major cities A and B in both directions will be reduced to 3.5 hours. The time it takes to service the train in both city A and city B is still 0.5 hours. Q2 (D) Calculate the travel demand between all pairs of cities for both Plan I and Plan II as well as the corresponding company revenues for all city…arrow_forwardmr omadoh sells sheep at the annual county auction. he wishes to use lpp to describe his problem and therefore consults the uon for assistance. sheep come in three sizes: large, medium and small. the large sheep(xl) costs sh.3500 and sells for sh.6000 each; the medium sheep (xm) costs sh.3000 and sells for sh.5000 each; the small one (xs) cost sh.1500 and sells for sh.2500 each. Omardoh must order atleast twenty of each type.he can spend nomre than sh. 0.3million on sheep invstment.his space limitation cant exceed 60 units of the large and medium sheep.he must obtain a gross revenue of atleast half a million from selling sheep.he further wants to maximise his profit subject to all the above constraints.i) formulate the appropriate LPP for omardohii)present the standard form of the LPPiii) would the profit be maximised if the objective function y= 50Xl+40Xm+20Xs was assumed for the same problemarrow_forward
- 13) Z-Salon profits $12 on each manicure and $18 per haircut. A manicure takes 30 minutes and a haircut takes 50 minutes. There are 5 stylists who each work 6 hours per day (that is a total of 360 min x 5 = 1800 minutes in available labor). The salon can schedule 50 appointments per day. How many manicures and how many haircuts should be scheduled each day in order order to maximize profit? What is the maximum profit? Let’s get you started. Let x = number of manicures Let y = number of haircuts OBJECTIVE The objective (goal) is to maximize profit, P. So the objective equation is P = ______________________________________________ objective equation CONSTRAINTS: 1) 2) 3) 4) Now graph the above system of inequalities (constraints) on your graph paper: Find all vertices (corner points) of your shaded region. Plug them in one at a time into the objective. Note the one which makes P the biggest. This one is our solution. Corner Pt (x,y)…arrow_forward(4) Assume that a website www.funwithmath1600.ag has three pages: Page A: KingAlgebra Page B: Learn1600andWin • Page C: Linear AlgbraIsEverywhere Each page has some links to the other pages of this website and no pages links to any page outside this website. Page A has three links to page B and only one link to page C. • Page B has three links to page A and two links to page C. • Page C has one link to page A and two links to page B. A student decides to explore this website starting from page A. Since reading content is always a boring task (is it?!) they decide to choose one of the links in page A with equal probability and click on the link to see the next page. As a result, on the next step, they will end up on page B with probability 3/4 and on the page C with probability 1/4. This process is then continued by the student with the same rule: Go the next page by clicking, with equal probability, on one of the existing links that are on the present page. (Use only fractions in your…arrow_forwardThe demand for motorcycle tires imported by Dixie Import-Export is 31,000/year and may be assumed to be uniform throughout the year. The cost of ordering a shipment of tires is $310, and the cost of storing each tire for a year is $2. Determine how many tires should be in each shipment if the ordering and storage costs are to be minimized.arrow_forward
- During each 6-hour period of the day, the Bloomington Police Department needs at least the number of policemen shown in the following table. Policemen can be hired to work either 12 consecutive hours or 18 consecutive hours. Policemen are paid $15 per hour for each of the first 12 hours a day they work and are paid $22.5 per hour for each of the next 6 hours they work in a day. Formulate an LP that can be used to minimize the cost of meeting Bloomington’s daily police requirements and solve it via Excel. Time Period Number of required policemen 12:00AM----6:00AM 12 6:00AM----12:00PM 8 12:00PM----6:00PM 6 6:00PM----12:00AM 15arrow_forwardA Tailor has the following material 16 square yard cotton, 11 square yard silk and 15 squareyard wool. As suit requires 2 square yard cotton, 1 square yard silk and 1 square yard wool. A gownrequires 1 square yard cotton, 2 square yard silk and 3 square yard wool. If the suit sales for Rs. 300and gown sales for Rs. 500. How many garments should the tailor made to Maximize the revenue.Formulate the problem as an LP- Model and then solve by Graphical Methodarrow_forward5) A factory owner has 100 employees that produce 6000 computers per day. For each additional employee that the owner highers, the average production per employee decreases by 8 computers. How many employees should the owner have in order to maximize production?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY