VECTOR MECHANIC
12th Edition
ISBN: 9781264095032
Author: BEER
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.5, Problem 11.155P
To determine
The speed (v) of a satellite relative to the Venus.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hi, could you help me with this, please?
PROBLEM 3.12
An object is launched at a speed of 20.0 m/s from the top of a tall tower. The height y
of the object with respect to the base of the tower as a function of the timet elapsed
from launch is y(t) = -4.90t² + 19.32t + 60, where y is in meters and t is in seconds.
Determine:
13. the height H of the tower.
50 m
c. 70 m
d. 80 m
а.
b.
60 m
14. the launch angle.
с. 75.35°
d. 77.35°
а.
71.35°
b.
73.35°
15. the horizontal distance traveled by the object before it hits the ground.
с. 32.28 m
d. 34.28 m
a.
28.28 m
b.
30.28 m
Two wires AC and BC are tied at C to a sphere that revolves at a constant speed v in the horizontal circle shown. Determine the range of the allowable values of v if both wires are to remain taut and if the tension in either of the wires is not to exceed 60 N.
Chapter 11 Solutions
VECTOR MECHANIC
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - A group of hikers uses a GPS while doing a 40-mile...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x = 0...Ch. 11.1 - Point A oscillates with an acceleration a =...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Starting from x = 0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - A nozzle discharges a stream of water in the...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - The angular displacement of the robotic arm is...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - The motion of a particle on the surface of a right...Ch. 11.5 - Prob. 11.178PCh. 11.5 - The three-dimensional motion of a particle is...Ch. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves down...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - A roller-coaster car is traveling at a speed of 20...Ch. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Free body diagram of B, D, and E.arrow_forwardPROBLEM 2.12 13. Two cars are traveling at the same speed, and the drivers hit the brakes at the same time. The deceleration of one car is double that of the other. By what factor do the times required for the two cars to come to a stop differ? 1 с. 2 d. 4 а. b.arrow_forwardA spacecraft approaching the planet Saturn reaches point A with a velocity vA of magnitude 68.8 × 103 ft/s. It is to be placed in an elliptic orbit about Saturn so that it will be able to periodically examine Tethys, one of Saturn’s moons. Tethys is in a circular orbit of radius 183 × 103 mi about the center of Saturn, traveling at a speed of 37.2 × 103 ft/s. Determine (a) the decrease in speed required by the spacecraft at A to achieve the desired orbit, (b) the speed of the spacecraft when it reaches the orbit of Tethys at B.arrow_forward
- While describing a circular orbit, 185 mi above the surface of the earth, a space shuttle ejects at point A an inertial upper stage (IUS) carrying a communications satellite to be placed in a geosynchronous orbit (see Prob. 13.87) at an altitude of 22,230 mi above the surface of the earth. Determine (a) the velocity of the IUS relative to the shuttle after its engine has been fired at A,( b) the increase in velocity required at B to place the satellite in its final orbit.Reference to Problem 13.87:arrow_forwardA satellite is in circular orbit around Earth at an altitude of three Earth radii above the surface. If the satellite uses onboard retro rockets to cut its speed to one half, at what distance from Earth can it establish a new stable circular orbit? Hint: vorbit =arrow_forward8 A spacecraft of mass m moves around the Earth (which we consider stationary) at elliptical orbit with eccentricity e=0.5 and major semi-axis a. At the moment t=0 the boat passes the pericenter of its orbit with speed uo. a) How much should we increase the measure of the boat's speed in relation to uo so that its trajectory becomes parabolic? b) On the parabolic trajectory, at what distance, in relation to the initial one, will where the boat is when its speed again becomes equal to uo? c) What will be the angular momentum of the boat with respect to the Earth in the above distance?arrow_forward
- applied mechanics 2arrow_forwardCommunication satellites are placed in a geosynchronous orbit, i.e., in a circular orbit such that they complete one full revolution about the earth in one sidereal day (23.934 h), and thus appear stationary with respect to the ground. Determine (a) the altitude of these satellites above the surface of the earth, (b) the velocity with which they describe their orbit. Give the answers in both SI and U.S. customary units.arrow_forwardRequired information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A 2000-kg automobile starts from rest at point A on a 6° incline and coasts through a distance of 67 m to point B. The brakes are then applied, causing the automobile to come to a stop at point C, 20 m from B. 20 m АB m 6° A В Knowing that slipping is impending during the braking period and neglecting air resistance and rolling resistance, determine the speed of the automobile at point B. The speed of the automobile at point B is m/s.arrow_forward
- 8.11 Estimate the total delta-v requirement for a Hohmann transfer from earth to Mercury, assuming a 150-km-altitude circular parking orbit at earth and a 150-km circular capture orbit at Mercury. Furthermore, assume that the planets have coplanar circular orbits with radii equal to the semimajor axes listed in Table A.1. {Ans.: 13.08 km/s}arrow_forward5. A 2-kg sphere is attached to a massless rigid rod attached to a fixed pivot point O. The rigid rod and mass rotate in the horizontal plane. A moment is applied to the rod of magnitude M = 0.5t² N. m, where t is in seconds. The length of the rod is 0.5 m. Determine the speed of the sphere after the moment is applied for 5 seconds. M(t)arrow_forwardI’m stuck on this problem. Please help with all parts especially starting with Newton’s law and sketching the situation. THANK YOUarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY