VECTOR MECHANICS FOR ENGINEERS W/CON >B
VECTOR MECHANICS FOR ENGINEERS W/CON >B
12th Edition
ISBN: 9781260804638
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11.5, Problem 11.141P

Race car A is traveling on a straight portion of the track while race car B is traveling on a circular portion of the track. At the instant shown, the speed of A is increasing at the rate of 10 m/s2, and the speed of B is decreasing at the rate of 6 m/s2. For the position shown, determine (a) the velocity of B relative to A, (b) the acceleration of B relative to A.

Fig. P11.141

Chapter 11.5, Problem 11.141P, Race car A is traveling on a straight portion of the track while race car B is traveling on a

(a)

Expert Solution
Check Mark
To determine

The relative velocity (vB/A) of point B with respective to point A.

Answer to Problem 11.141P

The relative velocity (vB/A) of point B with respective to point A is 189.5km/h_ at an angle (β) of 54°_.

Explanation of Solution

Given Information:

The speed (vA) of racer A is 240km/h.

The speed (vB) of racer B is 200km/h at an angle 50°.

The speed (aA)t of car A increasing in the rate of 10m/s2.

The speed (aA)t of car B decreasing in the rate of 6m/s2.

The radius of the circular path (ρ) is 300m

Calculation:

Convert unit kilometer per hour to meter per second.

Consider the velocity (vA).

vA=240km/h×1000m1km×1hr3600sec=66.67m/s

Consider the velocity (vB).

vB=200km/h×1000m1km×1hr3600sec=55.56m/s

Write the velocity of B(vB) in term of vector notation:

vB=55.56cos50°i+55.56sin50°j=35.71i+42.56j

Write the velocity of A(vA) in term of vector notation:

vA=66.67i

Calculate the relative velocity vector (vB/A) for point B to A:

vB/A=vBvA

Substitute 66.67i for vA and 35.71i+42.56j for vB.

vB/A=35.71i+42.56j66.67i=30.96i+42.56j

Here, (vB/A)x is 30.96 and (vB/A)y is 42.56

Calculate the relative velocity (vB/A) at point B to A using the relation:

vB/A=(vB/A)x2+(vB/A)y2

Substitute 30.96 for (vB/A)x and 42.56 for (vB/A)y.

vB/A=(30.96)2+(42.56)2=2769.8752=52.63m/s×1km1000m×3600sec1hr=189.5km/h

Calculate the angle (β) using the relation:

β=tan1((vB/A)y(vB/A)x)

Substitute 30.96 for (vB/A)x and 42.56 for (vB/A)y.

β=tan1(42.5630.96)=53.966°54°

Therefore, the relative velocity (vB/A) of point B with respective to point A is 189.5km/h_ at an angle (β) of 54°_.

(b)

Expert Solution
Check Mark
To determine

The relative acceleration (aB/A) of point B with respective to point A.

Answer to Problem 11.141P

The relative acceleration (aB/A) of point B with respective to point A is 21.8m/s2_ at an angle (α) of 5.3°_.

Explanation of Solution

Given Information:

The speed (vA) of racer A is 240km/h.

The speed (vB) of racer B is 200km/h at an angle 50°.

The speed (aA)t of car A increasing in the rate of 10m/s2.

The speed (aA)t of car B decreasing in the rate of 6m/s2.

The radius of the circular path (ρ) is 300m

Calculation:

Calculate the normal acceleration (aB)n at point B using the relation:

(aB)n=v2ρ

Substitute 55.67m/s for v and 300 m for ρ.

(aB)n=(55.56)2300=10.28m/s2

The normal acceleration at an angle:

ϕ=90°50°=40°

Write the normal acceleration of B (aB)n in term of vector notation:

(aB)n=((aB)ncosϕ)i((aB)nsinϕ)j

Substitute 10.28m/s2 for (aB)n and 40° for ϕ.

(aB)n=10.28cos40°i10.28sin40°j=7.875i6.608j

Write the tangential acceleration (aB)t in term of vector notation:

(aB)t=((aB)tcos50°)i+((aB)tsin50°)j

Substitute 6m/s2 for (aB)t and 40° for ϕ.

(aB)t=(6cos50°)i+(6sin50°)j=3.857i+4.596j

Write the tangential acceleration (aA)t in term of vector notation:

(aA)t=10i

The normal acceleration (aA)n at point A is 0 because the (ρ) is infinite.

Calculate the relative acceleration vector (aB/A) of point B with respective to point A using the relation:

(aB/A)=aBaA

Rewrite the above equation.

(aB/A)=((aB)t+(aB)n)((aA)t+(aA)n)

Substitute 3.857i+4.596j for (aB)t, 7.875i6.608j for (aB)n, 10i for (aA)t and 0 for (aA)n.

(aB/A)=(3.857i+4.596j)+(7.875i6.608j)(10i+0)=21.732i2.012j

Here, (aB/A)x is 21.732m/s2 and (aB/A)y is 2.012m/s2.

Calculate the relative acceleration (vB/A) of point B with respective to point A using the relation:

aB/A=(aB/A)x2+(aB/A)y2

Substitute, 21.732 for (aB/A)x and 2.012 for (aB/A)y.

aB/A=21.7322+(2.012)2=476.327=21.8m/s2

Calculate the angle (α) using the relation:

α=tan1((aB/A)y(aB/A)x)

Substitute, 21.732 for (aB/A)x and 2.012 for (aB/A)y.

α=tan1(2.01221.732)=5.3°

Therefore, the relative acceleration (aB/A) of point B with respective to point A is 21.8m/s2_ at an angle (α) of 5.3°_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
PROBLEM 11.46 Car A is parked along the northbound lane of a highway, and car B is traveling in the southbound lane at a constant speed of 60 mi/h. Att=0, A starts and accelerates at a constant rate a, while at t=5s, B begins to slow down with a constant deceleration of magnitude a 16. Knowing that when the cars pass each other x = 294 ft and v =VR, determine (a) the acceleration a, (b) when the vehicles pass each other, (c) the distance d between the vehicles at t=0. (-60 mi/h (l 0 Name - Mortada Ali SOLUTION Qassem VA =0+a,t Xg =0+(vg)ot (và)o =60 mi/h = 88 ft/s Xg = (88 ft/s)(5 s) = 440 ft 1 Va = ("g), + a»(t – 5) ag =--a, Assume t> 5 s when the cars pass each other. At that time (t AB ), VA = VB: astAB = (88 ft/s) – -(1 AB -5) 294 ft =ai. = 294 ft: a,(공AB-8)- 88 Then %3D 294 441B - 343t AB + 245 = 0 or Hey I want a nice handwriting please with my name the same solution
11.10 The acceleration of a particle is directly proportional to the square of the time t. When 1 = 0, the particle is at r = 24 m. Knowing that at 1 = 6 s, r = 96 m and o = 18 m/s, express r and o in terms of 1.   11.11 The acceleration of a particle is directly proportional to the time t. At 1 = 0, the velocity of the particle is o = 16 in./s. Knowing that D = 15 in./s and that r = 20 in. when t = 1 s. determine the velocity, the position, and the total distance traveled when 1 = 7 s.   11.12 The acceleration of a particle is defined by the relation a = kt?. (a) Knowing that u = -32 ft/s when t = 0 and that o = +32 fU/s when t = 4 s, determine the constant k. (b) Write the equations of motion, knowing also that + = 0 when + = 4 s.
Problem 12.228 At the instant shown, cars A and B are traveling at velocities of 40 m/s and 30 m/s, respectively. A is increasing its speed at 4 m/s², whereas the speed of B is decreasing at 3 m/s². The radius of curvature at B is pB = 200 m. (Figure 1) Figure L. 30° 1 of 1 Part A Determine the magnitude of the velocity of B with respect to A. Express your answer to three significant figures and include the appropriate units. VB/A Submit Part B = 0₂ = ol Submit μA Value Request Answer Determine the direction angle of the velocity of B with respect to A measured counterclockwise from the positive x axis. Express your answer in degrees to three significant figures. 7| ΑΣΦ ↓↑ Units Request Answer ? vec ? O

Chapter 11 Solutions

VECTOR MECHANICS FOR ENGINEERS W/CON >B

Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x = 0...Ch. 11.1 - Point A oscillates with an acceleration a =...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Starting from x = 0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - A nozzle discharges a stream of water in the...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - The angular displacement of the robotic arm is...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - The motion of a particle on the surface of a right...Ch. 11.5 - Prob. 11.178PCh. 11.5 - The three-dimensional motion of a particle is...Ch. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves down...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - A roller-coaster car is traveling at a speed of 20...Ch. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY