VECTOR MECHANICS FOR ENGINEERS W/CON >B
12th Edition
ISBN: 9781260804638
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.1, Problem 11.26P
A human-powered vehicle (HPV) team wants to model the acceleration during the 260-m sprint race (the first 60 m is called a flying start) using a = A − Cv2, where a is the acceleration in m/s2 and v is the velocity in m/s. From wind tunnel testing, they found that C = 0.0012 m−1. Knowing that the cyclist starts from rest and is going 100 km/h at the 260-meter mark, what is the value of A?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In class, we used the 1967 gravity formula to derive the change in gravitational
acceleration g with latitude, and we calculated the result at latitude o = 45°. Plot the
rate of change of g with latitude () in units of mgal/km, from the equator to the pole
(ø = 0° to ø = 90°). Be careful with the units; you will need to convert radians to km.
(Recall that there are 27 radians in a full circle, 360°.)
do
A subway train stops at two stations that are 2 km apart. The max. acceleration and deceleration of the train are 2 m/s2 and 1.6
m/s?, respectively and the max. allowable speed is 20 m/s. Which of the following gives the time to travel at a constant speed of 20
m/s?
a-t graph:
2 m/s?
t3
t2
-1.6 m/s?
Select the correct response:
100 s
88.75 s
87.85 s
80.25 s
As a body is projected to a high altitude above the earths surface, the variation of the acceleration of gravity with respect to altitude yy must be taken into account. Neglecting air resistance, this acceleration is determined from the formula a=−g0[R2/(R+y)2]a=−g0[R2/(R+y)2], where g0g0 = 9.81 m/s2 m/s 2 is the constant gravitational acceleration at sea level, RR = 6356 kmkm is the radius of the earth, and the positive direction is measured upward.
With what velocity does the particle strike the earth if it is released from rest at an altitude y0y0 = 400 kmkm?
Chapter 11 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - A group of hikers uses a GPS while doing a 40-mile...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x = 0...Ch. 11.1 - Point A oscillates with an acceleration a =...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Starting from x = 0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - A nozzle discharges a stream of water in the...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - The angular displacement of the robotic arm is...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - The motion of a particle on the surface of a right...Ch. 11.5 - Prob. 11.178PCh. 11.5 - The three-dimensional motion of a particle is...Ch. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves down...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - A roller-coaster car is traveling at a speed of 20...Ch. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As a body is projected to a high altitude above the earths surface, the variation of the acceleration of gravity with respect to altitude yy must be taken into account. Neglecting air resistance, this acceleration is determined from the formula a=−g0[R2/(R+y)2]a=−g0[R2/(R+y)2], where g0g0 = 9.81 m/s2 m/s 2 is the constant gravitational acceleration at sea level, RR = 6356 kmkm is the radius of the earth, and the positive direction is measured upward.arrow_forwardLabel steps clearlyarrow_forwardThe displacement of a particle is given by s=3t3-57t² + 114t 44 where s is in feet and it is in seconds. Plot the displacement, velocity. and acceleration as functions of time for the first 18 seconds of motion. After you have made the plots, answer the questions. Questions: Att 4.5 sec. Att 9 sec, Att 14.3 sec, A34 The velocity is zero when t 1 ft.v= ft. v ft, v= === sec and when t= !!! ft/sec, a= ft/sec. a ft/sec. a ft/sec ft/sec ft/secarrow_forward
- A motorist traveling on a highway at a speed of 60 mi/h exits onto an ice-covered exit ramp. Wishing to stop, he applies his brakes until his automobile comes to rest. Knowing that the magnitude of the total acceleration of the automobile cannot exceed 10 ft/s?, use computational software (MATLAB, Excel, or any) to determine the minimum time required for the automobile to come to rest and the distance it travels on the exit ramp during that time if the exit ramp (1) is straight. Also, solve (1) assuming that the driver applies his brakes so that dv/dt, during each time interval, (a) remains constant, and (b) varies linearly.arrow_forwardDuring a manufacturing process, a component moves in a linear pathsuch that its displacement “s” in mm is described as a function of time “t” inseconds by the equation: s = 3t3- t2 + 5t + 2 (mm) If a time of 1.5 seconds has elapsed in the process, determine :(i) the velocity of the component;(ii) the acceleration of the component.arrow_forwardAttached question 5, along with equation 6.arrow_forward
- At a parking garage, a motorcycle waits at rest 8 minutes later, the driver notices a car passes with a constant speed of 38.38 mph. If the driver wishes to overtake the car, how long will it it take him to overtake, given that his acceleration is 4.20 m/s^2arrow_forwardA particle moves along a straight line such that its position is defined by s = (t2 – 6t +5) m Part B Determine the average speed of the particle whent = 5.9 s. Express your answer to three significant figures and include the appropriate units. HA ? (Vsp)avg = Value Units Submit Request Answer Part C Determine the acceleration of the particle when t = 5.9 s. Express your answer to three significant figures and include the appropriate units. HA ? Value Units a =arrow_forward1 من إجمالي 1 Rectilinear Kinematics (Constant Acceleration) Home Work 2-2 Q1) Initially, the car travels along a straight road with a speed of 35 m/s. If the brakes are applied and the speed of the car is reduced to 10 m/s in 15 s, determine the constant deceleration of the car. Q2) A car starts from rest and with constant acceleration achieves a velocity of 15 m/s when it travels a distance of 200 m. Determine the acceleration of the car and the time required. Q3)A train starts from rest at a station and travels with a constant acceleration of 1 m/s. Determine the velocity of the train when t = 3s and the distance traveled during this time. Q4) car is traveling at 15 m/s, when the traffic light 50 m ahead turns yellow. Determine the required constant deceleration of the car and the time needed to stop the car at the light. Q5) Car A starts from rest at t 0 and travels along a straight road with a constant acceleration of 6 ft/s until it reaches a speed of 80 ft/s. Afterwards it…arrow_forward
- QUESTION 14 A particle accelerates with a linear acceleration of 2t3 where t is the time. The initial speed is 1m/s. What is the distance covered in 10 s? O 1.9990 m O 2.10000 m O 3.10010 m O 4.10020 m O 5. Not enough information provided.arrow_forwardA motorcycle starts from rest at s = 0 and travels along a straight road with the speed shown by the e-t graph. (Eigure 1) Part B Determine the motorcycle's position when t = 9 s Express your answer to three significant figures and include the appropriate units. s= 35.0 m Submit Previous Answers v Correct Part C Determine the motorcycle's acceleration when t- 12 s Express your answer to three significant figures and include the appropriate units. Value Units a- Submit Request Answer • Part D Figure 1 of 1> Determine the motorcycle's pos when t 12s Express your answer to three significant figures and include the appropriate units. (m/) 12 5 Value Units -+15 Submit Reauest Answer 10 15arrow_forwardThe velocity of a particle traveling in a straight line is given by v = (6t – 3t2) m/s, where t is in seconds. Suppose that s = 0 when t = 0 Part A Determine the particle's deceleration whent = 3.7 s Express your answer to three significant figures and include the appropriate units. HA ? a = Value Units Submit Request Answer Part B Determine the particle's position when t = 3.7 s. Express your answer to three significant figures and include the appropriate units. HÀ S = Value Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY