
Concept explainers
(a).
To calculate: The formula for the instantaneous rate of change of the balloon.
(a).

Answer to Problem 72E
The formula of instantaneous rate of change of the balloon is
Explanation of Solution
Given information: The displacement s,
Formula used:
Differentiate the equation of displacement ( s ) with respect to
Calculation:
Hence, the equation of rate change of the balloon is
(b).
To calculate: Average rate of change of the balloon after the first three seconds.
(b).

Answer to Problem 72E
The average speed is 16 feet per second.
Explanation of Solution
Given information: The displacement s,
Formula used:
Calculation:
Total distance after two second:
Total time, when
Therefore,
Hence, total time,
Therefore,
Hence, the average speed after two second is 20.43 feet per second.
(c).
To calculate: The velocity of the coin as it hit the ground.
(c).

Answer to Problem 72E
The velocity of the coin as it hit the ground is 32.32 feet per second.
Explanation of Solution
Given information: The displacement s,
Coin will impact the ground, when
Therefore,
Calculation:
Hence,
Formula used:
Differentiate the equation of displacement ( s ) with respect to
Put,
Hence, velocity at time of impact is 32.32 feet per second.
(d).
To calculate: The time when the coin`s velocity − 70 feet per second.
(d).

Answer to Problem 72E
At 2.19 seconds the velocity of the coin is -70 feet per second.
Explanation of Solution
Given information: The displacement s,
To get the velocity, differentiate the equation of displacement ( s ) with respect to
Formula used:
Differentiate the equation of displacement ( s ) with respect to
Put,
Therefore, in 2.19 seconds, the velocity of the coin is -70 feet per second.
(e).
To draw: a graph to verify the result of parts (a) and (b)
(e).

Answer to Problem 72E
The required graph:
Explanation of Solution
Given information: The displacement s,
The above quadratic equation has two solutions one is negative and the second one is positive and equal to
Therefore, it takes
If
Calculation:
Hence,
It means the height of the coin from the ground just before throwing, since the initial is 120 feet.
Chapter 11 Solutions
Precalculus with Limits: A Graphing Approach
- Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forwardCan you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forward
- Use a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward5. For the function y-x³-3x²-1, use derivatives to: (a) determine the intervals of increase and decrease. (b) determine the local (relative) maxima and minima. (e) determine the intervals of concavity. (d) determine the points of inflection. (e) sketch the graph with the above information indicated on the graph.arrow_forwardCan you solve this 2 question numerical methodarrow_forward
- 1. Estimate the area under the graph of f(x)-25-x from x=0 to x=5 using 5 approximating rectangles Using: (A) right endpoints. (B) left endpoints.arrow_forward9. Use fundamental theorem of calculus to find the derivative d a) *dt sin(x) b)(x)√1-2 dtarrow_forward3. Evaluate the definite integral: a) √66x²+8dx b) x dx c) f*(2e* - 2)dx d) √√9-x² e) (2-5x)dx f) cos(x)dx 8)²₁₂√4-x2 h) f7dx i) f² 6xdx j) ²₂(4x+3)dxarrow_forward
- 2. Consider the integral √(2x+1)dx (a) Find the Riemann sum for this integral using right endpoints and n-4. (b) Find the Riemann sum for this same integral, using left endpoints and n=4arrow_forwardProblem 11 (a) A tank is discharging water through an orifice at a depth of T meter below the surface of the water whose area is A m². The following are the values of a for the corresponding values of A: A 1.257 1.390 x 1.50 1.65 1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 Using the formula -3.0 (0.018)T = dx. calculate T, the time in seconds for the level of the water to drop from 3.0 m to 1.5 m above the orifice. (b) The velocity of a train which starts from rest is given by the fol- lowing table, the time being reckoned in minutes from the start and the speed in km/hour: | † (minutes) |2|4 6 8 10 12 14 16 18 20 v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0 Estimate approximately the total distance ran in 20 minutes.arrow_forwardX Solve numerically: = 0,95 In xarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





