Concept explainers
(a)
Interpretation:
The labelled bond angles needs to be determined in the given compound 'Halothane' a general anesthetic.
Concept Introduction:
Bond angles can be determined by VSEPR theory based on hybridization but not accurately for certain oxides, metallic compounds and gaseous salts. Valence shell electron pair repulsion theory or VSEPR theory used in chemistry as a model for the prediction of shape of various molecules by knowing the electron pairs on the central atom. There will be repulsion between the electron pairs present on central atom, so to minimize the repulsion they adopt an arrangement with minimum repulsion, thus determining molecule's shape. And by knowing the shape we can easily determine the bond angles.
The following table should be used while determining the shapes:
Number of groups | Number of lone pairs | Shape | Bond angle | |
2 | 2 | 0 | Linear | |
3 | 3 | 0 | Trigonal planar | |
4 | 4 | 0 | Tetrahedral | |
4 | 3 | 1 | Trigonal pyramidal | |
4 | 2 | 2 | Bent |
(b)
Interpretation:
The labelled bond angles needs to be determined in the given compound 'Propene' a petroleum product.
Concept Introduction:
Bond angles can be determined by VSEPR theory based on hybridization but not accurately for certain oxides, metallic compounds and gaseous salts Valence shell electron pair repulsion theory or VSEPR theory used in chemistry as a model for the prediction of shape of various molecules by knowing the electron pairs on the central atom. There will be repulsion between the electron pairs present on central atom, so to minimize the repulsion they adopt an arrangement with minimum repulsion, thus determining molecule's shape. And by knowing the shape we can easily determine the bond angles.
The following table should be used while determining the shapes:
Number of groups | Number of atoms | Number of lone pairs | Shape | Bond angle |
2 | 2 | 0 | Linear | |
3 | 3 | 0 | Trigonal planar | |
4 | 4 | 0 | Tetrahedral | |
4 | 3 | 1 | Trigonal pyramidal | |
4 | 2 | 2 | Bent |
(c)
Interpretation:
The labelled bond angles needs to be determined in the given compound 'Phenol' a petroleum product.
Concept Introduction:
Bond angles can be determined by VSEPR theory based on hybridization but not accurately for certain oxides, metallic compounds and gaseous salts. Valence shell electron pair repulsion theory or VSEPR theory used in chemistry as a model for the prediction of shape of various molecules by knowing the electron pairs on the central atom. There will be repulsion between the electron pairs present on central atom, so to minimize the repulsion they adopt an arrangement with minimum repulsion, thus determining molecule's shape. And by knowing the shape we can easily determine the bond angles.
The following table should be used while determining the shapes:
Number of groups | Number of atoms | Number of lone pairs | Shape | Bond angle |
2 | 2 | 0 | Linear | |
3 | 3 | 0 | Trigonal planar | |
4 | 4 | 0 | Tetrahedral | |
4 | 3 | 1 | Trigonal pyramidal | |
4 | 2 | 2 | Bent |
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Loose Leaf for General, Organic and Biological Chemistry with Connect 2 Year Access Card
- bre The reaction sequence shown in Scheme 5 demonstrates the synthesis of a substituted benzene derivative Q. wolsd works 2 NH2 NaNO2, HCI (apexe) 13× (1 HNO3, H2SO4 C6H5CIN2 0°C HOTE CHINO₂ N O *O₂H ( PO Q Я Scheme 5 2 bag abouoqmics to sounde odi WEIC (i) Draw the structure of intermediate O. [2 marks] to noitsmot od: tot meinedogm, noit so oft listsb ni zaupaib bas wa (ii) Draw the mechanism for the transformation of aniline N to intermediate O. Spoilage (b) [6 marks] (iii) Identify the reagent X used to convert compound O to the iodinated compound [tom E P. vueimado oilovonsa ni moitos nolisbnolov ayd toes ai tedw nisiqx (iv) Identify the possible structures of compound Q. [2 marks] [2 marks] [shom 2] (v) bus noires goiribbeolovo xnivollot adj to subora sidab Draw the mechanism for the transformation of intermediate P to compound Q. [5 marks] vi (vi) Account for the regiochemical outcome observed in the reaction forming compound Q. [3 marks]arrow_forwardPROBLEM 4 Solved Show how 1-butanol can be converted into the following compounds: a. PROBLEM 5+ b. d. -C= Narrow_forwardWhich alkene is the major product of this dehydration? OH H2SO4 heatarrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forward
- Quantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forwardQuantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning