Using E = 200 GPa, determine (a) the strain energy of the steel rod ABC when P = 25 kN, (b) the corresponding strain-energy density in portions AB and BC of the rod.
Fig. P11.10
(a)
The strain energy of the steel rod ABC.
Answer to Problem 10P
The strain energy of the steel rod ABC is
Explanation of Solution
Given information:
The diameter of the steel rod AB is
The diameter of the steel rod BC is
The length of the rod AB is
The length of the rod BC is
The modulus of elasticity of the steel is
The applied load
Calculation:
Calculate the area of the rod (A) as shown below.
For the steel rod AB.
Substitute
For the steel rod BC.
Substitute
Calculate the strain energy (U) as shown below.
Calculate the strain energy for rod ABC as shown below.
Substitute
Therefore, the strain energy for the steel rod ABC is
(b)
The strain energy density in rod AB and rod BC
Answer to Problem 10P
The strain energy density in rod AB is
The strain energy density in rod BC is
Explanation of Solution
Given information:
The diameter of the steel rod AB is
The diameter of the steel rod BC is
The length of the rod AB is
The length of the rod BC is
The modulus of elasticity of the steel is
The applied load
Calculation:
Refer to part (a).
The area of rod AB is
The area of the rod BC is
Calculate the stress
For the rod AB.
Substitute
For the rod BC.
Substitute
Calculate the strain energy density (u) as shown below.
For the rod AB.
Substitute
Hence, the strain energy density in rod AB is
For the rod BC.
Substitute
Therefore, the strain energy density in rod BC is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK MECHANICS OF MATERIALS
- Q10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forward
- Question 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forward
- If L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forwardTo calculate the rotation at Point B, a suitable virtual structure needs to be created. Which equation in the following choices most accurately represents the functional relationship between the bending moment, Mv2 ( Units: N.mm), of the virtual structure and the spatial coordinate x (Units: mm) if the applied unit virtual moment is clockwise? Select one: O 1. Mv2 1.000 O 2. Mv2=x+1.000 O 3. Mv2=x+0.000 4. Mv2 = -x-1.000 O 5. Mv2 -1.000 6. Mv2=-x+0.000arrow_forwardThe vertical deflection at Point B can be calculated as ( The following choices are provided in units of mm and rounded to three decimal places ; the downward deflection is negative and upward deflection is positive. ) Select one: 1. 1703.065 2. -1703.065 3. -2043.679 4.1362.452 5. -1362.452 6. 2043.679arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY