CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 13P
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 20 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 15 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed from each l bm of water at 55°F to turn it into ice at 25°F).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An ideal vapor-compression refrigeration cycle that uses refrigerant-134a as its working fluid maintains a condenser at 800 kPa and the evaporator at 15 kPa. Given 300 kW of cooling load, determine the following: 1. Construct didactic sketches, showing the operating principles of a refrigeration system.2. When you select a refrigerant for a certain application, what qualities would you look for in the refrigerant?3. Estimate the reversible COP values, if the low and high medium temperature are as for the evaporator and condenser.
A Carnot vapor refrigeration cycle uses R-134a as the working fluid The refrigerant enters the condenser as saturated vapor at 28°C and leaves as saturated liquid. The evaporator operates at a temperature of 10°C. For every kg of refrigerant flow, calculate the amount o heat absorbed in the evaporator, kJ.
An ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the compressor work, kW.
Chapter 11 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerators currently being manufactured in the United States are using______as their refrigerant.arrow_forwarda) A freezer working on an ideal vapour-compression refrigeration cycle uses refrigerant R- 134a with a mass flow rate of 0.10 kg/s. The refrigerant leaves the evaporator as saturated vapour at a temperature of -8 °C. It leaves the condenser as saturated liquid at a pressure of 0.8 MPa. Determine the power required to drive the compressor. Note that the thermodynamic properties of R-134a are attached at the end of the paper. 0.8 MPa A Figure Q4 b) A freezer wall is made of a composite material with a thickness of 20 mm and a conductivity of 0.03 W/m-K. Air temperatures inside and outside the freezer are -6 °C and 20 °C, respectively. The convection coefficient is 2 W/m² K on both the inner and outer surfaces of the freezer wall. Determine the heat flux through the freezer wall. -8 Carrow_forwardAn ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the temperature of the superheated ammonia vapor exiting the compressor.arrow_forward
- A Carnot vapor refrigeration cycle uses R-134a as the working fluid. The refrigerarit enters the condenser as saturated vapor at 28°C and leaves as saturated liquid. The evaporator operates at a temperature of -10°C. For every kg of refrigerant flow, calculate the work of compression, kJarrow_forwardAn ideal refrigerant-134a vapor-compression refrigeration cycle operates between 0.14 MPa and 0.7 MPa. The mass flow rate of the refrigerant is 0.15 kg/s. Determine the rate of heat removal from the refrigerated space, kW.arrow_forwardAn ideal vapor-compression refrigeration cycle that uses refrigerant-134a as its working fluid maintains a condenser at 800 kPa and the evaporator at 15 kPa. Given 300 kW of cooling load, determine the following: 3. Estimate the reversible COP values, if the low and high medium temperature are as for the evaporator and condenser. 4. Determine the Refrigeration effect (RE), heat of compression (HOC), and heat of rejection (HOR) and their corresponding rate/power values in kW. 5. Estimate the COPR using thermodynamic tables 6. Calculate the COPR using the P-h chart and show the refrigeration cycle on the p-h chart.arrow_forward
- An ideal vapor-compression heat pump cycle with Refrigerant 134a as the working fluid provides 15 kW to maintain a building at 200°C when the outside temperature is 50°C. Saturated vapor at 2.4 bar leaves the evaporator, and saturated liquid at 8 bar leaves the condenser. Calculate (a) The power input to the compressor, in kW (b) The coefficient of performance. (c) The coefficient of performance of a reversible heat pump cycle operating between thermal reservoirs at 20 and 50°C. (h, = 244.09kJ/ke, 5 = 0.9222 kJ/kg -K; h, = 268.97 kJ/ kg; h, = 93.42 kJ/ kg)arrow_forwardAn ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the amount of heat rejected in the condenser, kJ/min.arrow_forward1. An ideal-gas refrigeration cycle uses air as the working fluid to maintain a refrigerated space at - 30°C while rejecting heat to the surrounding medium at 30°C. If the pressure ratio of the compressor is 3 and the polytropic index is 1.3 for both compressor and expander, determine the minimum temperature in the cycle for a mass flow rate of 0.03 kg/s. °Carrow_forward
- A heat pump operates on the ideal vapor compression refrigeration cycle with R-134a as the working fluid between the pressure limits of 120 and 800 kPa If the rate mass flow rate of the refrigerant is 0.4 kg/s, the rate of heat supply by the heat pump to the heated space isarrow_forwardA steady-flow Carnot refrigeration cycle uses R-134a as the working fluid. The refrigerant changes from saturated vapor to saturated liquid at 36°C in the condenser as it rejects heat. The evaporator pressure is 200 kPa. For every kg of refrigerant, calculate the coefficient of performance of the cycle.arrow_forwardAn ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the coefficient of performance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY