EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 133FEP
An ideal vapor-compression refrigeration cycle with R-134a as the working fluid operates between the pressure limits of 120 kPa and 700 kPa. The mass fraction of the refrigerant that is in the liquid phase at the inlet of the evaporator is
- (a) 0.69
- (b) 0.63
- (c) 0.58
- (d) 0.43
- (e) 0.35
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to -5°C. This
solution is pumped to various buildings for the purpose of air-conditioning. The refrigerant evaporates at -12.00°C with a total mass
flow rate of 8.000 kg/s and condenses at 600 kPa. Determine the COP of the cycle and the total cooling load. (Take the required
values from saturated refrigerant-134a tables.)
The COP of the cycle is
(Round the final answer to three decimal places.) and the total cooling load is
kW.
An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to
-5°C. This solution is pumped to various buildings for the purpose of air-conditioning. The refrigerant evaporates at -18°C with a
total mass flow rate of 5 kg/s and condenses at 600 kPa. Determine the COP of the cycle and the total cooling load. (Take the
required values from saturated refrigerant-134a tables.)
The COP of the cycle is
, and the total cooling load is
kW.
A R-134A vapor refrigeration cycle operates at an evaporator temperature of -17 °C and a condensing temperature of 33. Determine the cop of the heat pump
(a) for an ideal saturation cycle
(b) for wet compression with saturated vapor leaving the compressor and
(c) if the vapor at the suction to the compressor is superheated 6 degrees.
Chapter 11 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - 11–3 A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - It is proposed to use water instead of...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - The COP of vapor-compression refrigeration cycles...
Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Condensers in these refrigerators are all_______cooled.arrow_forwardWhen a standard-efficiency air-cooled condenser is used, the condensing refrigerant will normally be higher in temperature than the entering air temperature.arrow_forwardWhat are the approximate temperature ranges tor low-, medium-, and high-temperature refrigeration applications?arrow_forward
- A vapor-compression refrigeration cycle with refrigerant-134a as the working fluid operates between pressure limits of 240 and 1600 kPa. The isentropic efficiency of the compressor is 78%. The refrigerant is superheated by 5.4 °C at the compressor inlet and subcooled by 5.9 °C at the exit of the condenser. Determine (a) the heat absorption in the evaporator, (b) the heat rejection in the condenser, (c) the work input, and (d) the COP. (e) Also determine all parameters if the cycle operated on the ideal vapor-compression refrigeration cycle between the same pressure limits.arrow_forwardA vapor compression refrigeration cycle uses refrigerant-134a as its working fluid. The condenser pressure is 800 kPa and the evaporator temperature is -20 C. The compressor has an isentropic efficiency of 80 percent. The mass flow rate is 1.7489 kg/s. In the question that follows, select the answer that is closest to the true value. What is the heat going to the evaporator in units of kW?arrow_forwardIn an ideal vapour-compression refrigeration cycle, refrigerant R-12 enters the compressor as a saturated vapour at −18 degree C and leaves the condenser as a saturated liquid at 25 degree C. The mass flow rate of the refrigerant is 0.5 kg/s, and the pressure drop in the evaporator and the condenser are negligible. Calculate: a) the refrigeration effect (rate of refrigeration or heat transfer rate in the evaporator) b)power consumed by the compressor c)the coefficient of performance of the refrigerator) d)qualityof the refrigerant after the expansion valve e)heat transfer rate in the condenserarrow_forward
- Refrigerant 22 is the working fluid in a Carnot vapor refrigeration cycle for which the evaporator temperature is -30°C. Saturated vapor enters the condenser at 36°C, and saturated liquid exits at the same temperature. The mass flow rate of refrigerant is 10 kg/min. Determine the quality of refrigerant at inlet of compressor, (A) 0.9430 B 0.6931 C 0.7931 D 0.8931arrow_forward1. An ideal vapor-compression refrigeration cycle that uses refrigerant-134a as its working fluid maintains a condenser at 800 kPa and the evaporator at -12°C. Determine this system's COP and the amount of power required to service a 150 kW cooling load. Answers: 4.87, 30.8 kWarrow_forwarda) A freezer working on an ideal vapour-compression refrigeration cycle uses refrigerant R- 134a with a mass flow rate of 0.10 kg/s. The refrigerant leaves the evaporator as saturated vapour at a temperature of -8 °C. It leaves the condenser as saturated liquid at a pressure of 0.8 MPa. Determine the power required to drive the compressor. Note that the thermodynamic properties of R-134a are attached at the end of the paper. 0.8 MPa A Figure Q4 b) A freezer wall is made of a composite material with a thickness of 20 mm and a conductivity of 0.03 W/m-K. Air temperatures inside and outside the freezer are -6 °C and 20 °C, respectively. The convection coefficient is 2 W/m² K on both the inner and outer surfaces of the freezer wall. Determine the heat flux through the freezer wall. -8 Carrow_forward
- A two-evaporator, multiple EV,and single compression refrigeration system uses refrigerant-134a as the working fluid. The system operates evaporator 1 at 0°C, evaporator 2 at -26.4°C, and the condenser at 800kPa. The refrigerant is circulated through the compressor at a rate of 0.1kg/s and the low temperature evaporator serves a cooling load of 8 kW.Determine the cooling rate of the high-temperature evaporator, the power required by the compressor, and the COP of the system. The refrigerant is saturated liquid at the exit of the condenser and saturated vapor at the exit of each evaporator, and the compressor is isentropic.arrow_forwardA vapor compression cycle with R-134a is being used as its refrigerant. The refrigerant leaves the evaporator at -10 C and 120 kPa and it enters the condenser 1.0 MPa. Assuming there is a heat loss due to compression which is equal to 20 kJ/kg, and it has a cooling capacity of 75 tons of refrigeration, Determine the following: (a)heat rejected (b)cooling effect (c)work of compression (d) coefficient of performance (e)volume flow rate of refrigerant (f)compressor discharge temperaturearrow_forwardAn R-134a vapor compression cycle, has a refrigeration load of 3 tones. The evaporator and condenser temperatures are -20°C and 40°C respectively. Determine (a) the refrigerant flow rate in kg/s, (b) the volume flow rate handled by the compressor in m3/s, (c) work input to the compressor in kW, (d) heat rejected in the condenser in kW (e) the isotropic discharge temperature. If there is a 5°C of superheating of vapor before it enters the compressor, and 5°C sub cooling of liquid before it flows through the expansion valve, determine the above quantities. (Cp liquid and Cp vapor values are 0.963 and 0.6165 kJ/kg K respectively).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY