Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 8RQ
To determine
To explain:
Pulsars on the basis ofthe lighthouse model.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(Astronomy)
PSR1913+16 Problem II. Using only the Figure, what are the maximum radial velocities as found from the redshift and blueshift, respectively? Note: redshifts have positive radial velocities values in the figure, whereas blueshifts have negative radial velocity values.
(Answer in km/s)
The Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us?
answer to three significant figures.
What characteristics must a binary star have to be a good candidate for a blackhole? Why is each of these characteristics important?
Chapter 11 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Prob. 5RQCh. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - Prob. 8RQCh. 11 - Prob. 9RQCh. 11 - Prob. 10RQ
Ch. 11 - Prob. 11RQCh. 11 - If the Sun has a Schwarzschild radius, why isn’t...Ch. 11 - Prob. 13RQCh. 11 - Prob. 14RQCh. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - Prob. 1DQCh. 11 - Prob. 2DQCh. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 1LTLCh. 11 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When Henrietta Leavitt discovered the period-luminosity relationship, she used cepheid stars that were all located in the Small Magellanic Cloud. Why did she need to use stars in another galaxy and not cepheids located in the Milky Way?arrow_forwardhelparrow_forwardA stellar black hole may form when a massive star dies. The mass of the star collapses down to a single point. Imagine an astronaut orbiting a black hole having eight times the mass of the Sun. Assume the orbit is circular. a. Find the speed of the astronaut if his orbital radius is r = 1 AU. b. Find his speed if his orbital radius is r = 11.8 km. c. CHECK and THINK: Compare your answers to the speed of light in a vacuum. What would the astronauts orbital speed be if his orbital radius were smaller than 11.8 km?arrow_forward
- If the pulsar shown in Figure 23.16 is rotating 100 times per second, how many pulses would be detected in one minute? The two beams are located along the pulsar’s equator, which is aligned with Earth. Figure 23.16 Model of a Pulsar. A diagram showing how beams of radiation at the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates. As each beam sweeps over Earth, like a lighthouse beam sweeping over a distant ship, we see a short pulse of radiation. This model requires that the magnetic poles be located in different places from the rotation poles. (credit “stars”: modification of work by Tony Hisgett)arrow_forwardWhat characteristics must a binary star have to be a good candidate for a black hole? Why is each of these characteristics important?arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forward
- Describe the evolution of a pulsar over time, in particular how the rotation and pulse signal changes over time.arrow_forwardAccording to a model described in the text, a neutron star has a radius of about 10 km. Assume that the pulses occur once per rotation. According to Einstein’s theory of relatively, nothing can move faster than the speed of light. Check to make sure that this pulsar model does not violate relativity. Calculate the rotation speed of the Crab Nebula pulsar at its equator, given its period of 0.033 s. (Remember that distance equals velocitytime and that the circumference of a circle is given by 2pR).arrow_forwardAt rest hydrogen has a spectral line at 149nm. If this line is observed at 144nm for the star Proxima, how fast is Proxima moving in km/s?arrow_forward
- You observe the H-alpha line of Hydrogen in a distant galaxy to have a wavelength of 918.4 nm. What is the radial velocity of the galaxy?arrow_forwardAt rest, hydrogen has a spectral line at 144 nm. If this line is observed at 168 nm for the star Proxima, how fast is Proxima moving in km/s? unansweredarrow_forwardLet’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, awayarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning