Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 4P
To determine
The orbital velocity of a particle at its outer edge if the accretion disk around a neutron star with an average mass has a radius of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the escape velocity (in km/s) from the surface of a 1.5 M neutron star? From a 3.0 M neutron star? (Hint: Use the formula for escape velocity,
Ve =
2GM
r
;
make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 ✕ 1030 kg.)
1.5 M neutron star km/s3.0 M neutron star km/s
What is the escape velocity (in km/s) from the surface of a 1.1 M. neutron star? From a 3.0 M. neutron star? (Hint: Use the formula for escape velocity, V̟ = V
2GM
; make sure to
express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 x 1030
kg.)
1.1 M neutron star
km/s
3.0 M. neutron star
km/s
If a neutron star has a radius of 12 km and a temperature of 8.0 x 10° K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation
Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 x 1026 w.)
luminosity in watts
luminosity in solar luminosity units
(Astronomy)
Supernova Ejection Times. Observations show that the gas ejected from SN 1987A is moving at about 10,000 km⁄s. How long will it take to travel one astronomical unit in hours? (Note that 1 AU equals 1.5 × 108 km)
Chapter 11 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Prob. 5RQCh. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - Prob. 8RQCh. 11 - Prob. 9RQCh. 11 - Prob. 10RQ
Ch. 11 - Prob. 11RQCh. 11 - If the Sun has a Schwarzschild radius, why isn’t...Ch. 11 - Prob. 13RQCh. 11 - Prob. 14RQCh. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - Prob. 1DQCh. 11 - Prob. 2DQCh. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 1LTLCh. 11 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use the following formula (fitted to data) M = -4x10-13n gR Mo/year for the mass loss of asymptotic giant branch stars to: a) explain why L, g (gravity on surface), and R enter the equation the way they do (nominator or denominator). b) show that the expression for M is equivalent to LR M = -4x10-13n Mo/year M c) estimate the mass loss rate of a star with M = 1 Mo, L = 7000 Lo, T = 3000 K. Assume n = 1 and use the Stefan-Boltzmann equation to calculate R (in Ro).arrow_forwardWhat is the escape velocity (in km/s) from the surface of 1.1 M neutron star? (hint: Use the formula for the escape velocity Ve = 2GM/R ; make sure to express quantities in United of meters, kilograms, and seconds. Assume a neutron has a radius of 11 km and assume the mass of the sun is 1.99 x10^30 kg.) 1.1 M neutron Star = _________ km/s 3.0 neutron Star = __________ km/sarrow_forwardQuestion 4 pleasearrow_forward
- A star is transited by a planet. From the measured period T and the transit duration t alone, show that one can obtain an upper bound on the density of the transited star : rhomax= 3T/(G(pi2)(t3)). Hint: Combine Kepler's Law [(omega2)(a3)=GMstar and the equation t=((rstarT)/(pi*a))*(1-b2)1/2 to eliminate a, and then extract the density of the spherical star. The upper bound is obtained by assuming an impact parameter b=0.arrow_forwardusing the center-of-mass equations or the Carter of Mass Calculator (under Binary-Star Basics, abova), you will investigate a specific binary star system. Assume that Star 1 has m, 3.2 solar masses, Star 2 has m,-0.9 solar masses, and the total separation of the two (R) is 34 All (One AU is Earth's average distance from the Sun) (2) What is the distance, d. (In Au) from Star 1 to the center of mass? AU (b) What is the distance, dy On Au) from Star 2 to the center of mass AU ( what is the ratio of d, tod?arrow_forward2GM What is the escape velocity (in km/s) from the surface of a 1.6 Mo neutron star? From a 3.0 M. neutron star? (Hint: Use the formula for escape velocity, V. ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 x 1030 kg.) 1.6 Mo neutron star km/s 3.0 Me neutron star km/sarrow_forward
- 2GM What is the escape velocity (in km/s) from the surface of a 1.1 Mo neutron star? From a 3.0 M, neutron star? (Hint: Use the formula for escape velocity, V. = make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 x 1030 kg.) 1.1 Me neutron star km/s 3.0 M. neutron star km/sarrow_forwardSuppose two protostars form at the same time, one with a mass of 0.5MSunSun [Select ALL answers that are true in alphabetical order]A) The 10MSun protostar will have a smaller change in surface temperature during this phase than the 0.5MSun protostar.B) The 10MSun protostar will reach the main sequence cooler and fainter than the 0.5MSun protostar.C) The 10MSun star will end its main-sequence life before the 0.5MSun star even completes its protostar stage.D) The 10MSun protostar will have a smaller change in luminosity during the sequence shown than the 0.5MSun protostar.E) The 10MSun protostar will be much more luminous than the 0.5MSun protostar.arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M neutron star? From a 3.0 M neutron star?arrow_forward
- Assuming that at the end of the He burning phase of the stellar core (r < R_core) has no H or He or other metals and is composed completely of Carbon, X=Y=0, X_c = 1 ; The envelope above the core has a normal stellar composition ( r > R_core). Calculate the length of time in years that a 1M_sol and 10M_sol star will live on the horizontal branch or the time between the start and end of the He burning phase. Assume that the normal relationship between mass and luminosity holds for horizontal branch stars. Please be as detailed as possiblearrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forwardCalculate the angular diameter of a prestellar nebula of radius 125 AU lying 150 pc from Earth. angular diameter = 15. ΑΣΦ B ? arc secondsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning