Concept explainers
Interpretation:
The volume of lead nitrate required to react with given potassium chromate solution and the mass of lead chromate formed are to be determined.
Concept Introduction:
Titration is a method to determine the concentration of a substance in solution by allowing it to react with a solution of known concentration of other substance, just beyond the point where the reaction between both the substances comes to an end. In precipitation reactions, on reaction of the reactants, an insoluble end product is formed which precipitates out from the solution.
Answer to Problem 8PP
Solution:
The volume of lead nitrate required to react with given potassium chromate solution is
Explanation of Solution
Given Information:
The molarity of lead nitrate solution is
The given
Thus, one mole of lead nitrate reacts with one mole of potassium chromate to form a mole of lead chromate.
The normality
The product of volume of lead nitrate solution
The volume of lead nitrate solution is determined by using equation (2). Substitute
Thus, the volume of lead nitrate required is
Convert volume units from milliliters to litres as follows:
Convert
The molarity of the solution
Substitute
From the equation, it can be summarized that one mole of lead nitrate produces one mole of lead chromate.
For
Thus, the mass of lead chromate formed is
The volume of lead nitrate required to react with given potassium chromate solution is
Want to see more full solutions like this?
Chapter 11 Solutions
Introduction to Chemistry
- Arsenic acid, H3AsO4, is a poisonous acid that has been used in the treatment of wood to prevent insect damage. Arsenic acid has three acidic protons. Say you take a 25.00-mL sample of arsenic acid and prepare it for titration with NaOH by adding 25.00 mL of water. The complete neutralization of this solution requires the addition of 53.07 mL of 0.6441 M NaOH solution. Write the balanced chemical reaction for the titration, and calculate the molarity of the arsenic acid sample.arrow_forwardSodium chloride is used in intravenous solutions for medical applications. The NaCl concentration in such solutions must be accurately known and can be assessed by reacting the solution with an experimentally determined volume of AgNO3 solution of known concentration. The net ionic equation is Ag+(aq)+Cl(aq)AgCl(s) Suppose that a chemical technician uses 19.3 mL of 0.200-M AgNO3 to convert all the NaCl in a 25.0-mL sample of an intravenous solution to AgCl. Calculate the molarity of NaCl in the solution.arrow_forwardAn antacid tablet contains sodium hydrogen carbonate, NaHCO3, and inert ingredients. A 0.465-g sample of powdered tablet was mixed with 53.3 mL of 0.190 M HCl (hydrochloric acid). The mixture was allowed to stand until it reacted. NaHCO3(s)+HCl(aq)NaCl(aq)+H2O(l)+CO2(g) The excess hydrochloric acid was titrated with 54.6 mL of 0.128 M NaOH (sodium hydroxide). HCl(aq)+NaOH(aq)NaCl(aq)+H2O(l) What is the percentage of sodium hydrogen carbonate in the antacid?arrow_forward
- Potassium permanganate (KMnO4) solutions are used for the determination of Fe2+ in samples of unknown concentration. As a laboratory assistant, you are supposed to prepare 500 mL of a 0.1000 M KMnO4 solution. What mass of KMnO4, in grams, do you need?arrow_forwardA 0.608-g sample of fertilizer contained nitrogen as ammonium sulfate, (NH4)2SO4. It was analyzed for nitrogen by heating with sodium hydroxide. (NH4)2SO4(s)+2NaOH(aq)Na2SO4(aq)+2H2O(l)+2NH3(g) The ammonia was collected in 46.3 mL of 0.213 M HCl (hydrochloric acid), with which it reacted. NH3(g)+HCl(aq)NH4Cl(aq) This solution was titrated for excess hydrochloric acid with 44.3 mL of 0.128 M NaOH. NaOH(aq)+HCl(aq)NaCl(aq)+H2O(l) What is the percentage of nitrogen in the fertilizer?arrow_forwardPotassium hydrogen phthalate, KHC8H4O4, is used to standardize solutions of bases. The acidic anion reacts with bases according to this net ionic equation: A 0.902-g sample of potassium hydrogen phthalate requires 26.45 mL NaOH to react; determine the molarity of the NaOH.arrow_forward
- A 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forwardA 25.0-mL sample of vinegar (which contains the weak acid acetic acid, CH3CO2H) requires 28.33 mL of a 0.953 M solution of NaOH for titration to the equivalence point. What is the mass of acetic acid (molar mass = 60.05 g/mol), in grams, in the vinegar sample, and what is the concentration of acetic acid in the vinegar? CH3CO2H(aq) + NaOH(aq) NaCH3CO2(aq) + H2O(l)arrow_forwardA 25.0-mL sample of sodium sulfate solution was analyzed by adding an excess of barium chloride solution to produce barium sulfate crystals, which were filtered from the solution. Na2SO4(aq)+BaCl2(aq)2NaCl(aq)+BaSO4(s) If 5.719 g of barium sulfate was obtained, what was the molarity of the original Na2SO4 solution?arrow_forward
- An antacid tablet has calcium carbonate as the active ingredient; other ingredients include a starch binder. You dissolve the tablet in hydrochloric acid and filter off insoluble material. You add potassium oxalate to the filtrate (containing calcium ion) to precipitate calcium oxalate. If a tablet weighing 0.750 g gave 0.629 g of calcium oxalate, what is the mass percentage of active ingredient in the tablet?arrow_forwardA stock solution of potassium dichromate, K2Cr2O7, is made by dissolving 84.5 g of the compound in 1.00 L of solution. How many milliliters of this solution are required to prepare 1.00 L of 0.150 M K2Cr2O7?arrow_forwardBone was dissolved in hydrochloric acid, giving 50.0 mL of solution containing calcium chloride, CaCL2. To precipitate the calcium ion from the resulting solution, an excess of potassium oxalate was added. The precipitate of calcium oxalate, CaC2O4, weighed 1.437 g. What was the molarity of CaCl2 in the solution?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning