Achilles tendon. The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme activities, such as sprinting, it can be subjected to forces as high as 13 times a person’s weight. According to one set of experiments, the average area of the Achilles tendon is 78.1 mm 2 , its average length is 25 cm, and its average Young’s modulus is 1474 MPa. (a) How much tensile stress is required to stretch this muscle by 5.0% of its length? (b) If we model the tendon as a spring, what is its force constant? (c) If a 75 kg sprinter exerts a force of 13 times his weight on his Achilles tendon, by how much will it stretch?
Achilles tendon. The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme activities, such as sprinting, it can be subjected to forces as high as 13 times a person’s weight. According to one set of experiments, the average area of the Achilles tendon is 78.1 mm 2 , its average length is 25 cm, and its average Young’s modulus is 1474 MPa. (a) How much tensile stress is required to stretch this muscle by 5.0% of its length? (b) If we model the tendon as a spring, what is its force constant? (c) If a 75 kg sprinter exerts a force of 13 times his weight on his Achilles tendon, by how much will it stretch?
Achilles tendon. The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme activities, such as sprinting, it can be subjected to forces as high as 13 times a person’s weight. According to one set of experiments, the average area of the Achilles tendon is 78.1 mm2, its average length is 25 cm, and its average Young’s modulus is 1474 MPa. (a) How much tensile stress is required to stretch this muscle by 5.0% of its length? (b) If we model the tendon as a spring, what is its force constant? (c) If a 75 kg sprinter exerts a force of 13 times his weight on his Achilles tendon, by how much will it stretch?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Chapter 11 Solutions
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.