Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 7PCE
At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the left side of the pivot an adult pushes straight down on the teeter-totter with a force of 151 N. In which direction (clockwise or counterclockwise) does the teeter-totter rotate if the adult applies the force at a distance of (a) 3.0 m, (b) 2.5 m, or (c) 2.0 m from the pivot?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At the local playground, a 21-kg child sits on the right end ofa horizontal teeter-totter, 1.8 m from the pivot point. On the leftside of the pivot an adult pushes straight down on the teeter-totterwith a force of 151 N. In which direction (clockwise or counterclockwise) does the teeter-totter rotate if the adult applies the forceat a distance of (a) 3.0 m, (b) 2.5 m, or (c) 2.0 m from the pivot?
40 KN
30 kN
60 KN
60 KN
30 KN.
40 KN
I
16 m 12 m 8 m
I
The three-step pulley is
subjected to the given
couples. (a) Compute
the value of the
resultant couple. Also,
(b) determine the
forces acting at the rim
of the middle pulley
that are required to
balance the system.
Assume :
CCW = positive
CW = negative
A 10 kg Teflon object on a level surface has a coefficient of static friction and kinetic friction of 0.04 with the surface. (Interestingly, Teflon has approximately the same static and kinetic coefficient of friction which is quite uncommon.) This Teflon box has a rotating thruster which rotates in the vertical plane normal to the surface that exerts a thrust of 15 N. If the thruster starts pointing upward (thrusting the box toward the surface) and starts rotating to the horizontal position, at what angle will it rotate before the box begins to move?
if the thruster rotates downward at a rate of 5 degrees/second, what will the speed of the box be at the instant the thruster becomes completely horizontal?
Chapter 11 Solutions
Physics (5th Edition)
Ch. 11.1 - A bicycle wheel is mounted on an axle, as shown in...Ch. 11.2 - Consider two objects with the following...Ch. 11.3 - A Physics sign is supported symmetrically by two...Ch. 11.4 - A mobile made from three piggy banks (A, B, C) is...Ch. 11.5 - Prob. 5EYUCh. 11.6 - Consider two objects with the following...Ch. 11.7 - Prob. 7EYUCh. 11.8 - In system 1, a torque of 20 N m acts through an...Ch. 11.9 - The angular velocity of the spinning bicycle wheel...Ch. 11 - Two forces produce the same torque. Does it follow...
Ch. 11 - A car pitches down in front when the brakes are...Ch. 11 - A tightrope walker uses a long pole to aid in...Ch. 11 - When a motorcycle accelerates rapidly from a stop...Ch. 11 - Give an example of a system in which the net...Ch. 11 - Give an example of a system in which the net force...Ch. 11 - Is the normal force exerted by the ground the same...Ch. 11 - Give two everyday examples of objects that are not...Ch. 11 - Give two everyday examples of objects that are in...Ch. 11 - Can an object have zero translational acceleration...Ch. 11 - Stars form when a large rotating cloud of gas...Ch. 11 - What purpose does the tail rotor on a helicopter...Ch. 11 - Is it possible to change the angular momentum of...Ch. 11 - Suppose a diver springs into the air with no...Ch. 11 - To tighten a spark plug, it is recommended that a...Ch. 11 - Pulling a Weed The gardening tool shown in Figure...Ch. 11 - A person slowly lowers a 3.6-kg crab trap over the...Ch. 11 - A squirrel-proof bird feeder has a lever that...Ch. 11 - At one position during its cycle, the foot pushes...Ch. 11 - BIO Predict/Calculate Force to Hold a Baseball A...Ch. 11 - At the local playground, a 21-kg child sits on the...Ch. 11 - Predict/Explain Consider the pulley-block systems...Ch. 11 - Suppose a torque rotates your body about one of...Ch. 11 - A torque of 0.97 N m is applied to a bicycle...Ch. 11 - When a ceiling fan rotating with an angular speed...Ch. 11 - When the play button is pressed, a CD accelerates...Ch. 11 - A person holds a ladder horizontally at its...Ch. 11 - A 0.180-kg wooden rod is 1.25 m long and pivots at...Ch. 11 - Predict/Calculate A wheel on a game show is given...Ch. 11 - The L-shaped object in Figure 11-41 consists of...Ch. 11 - The L-shaped object described in the previous...Ch. 11 - A motorcycle accelerates from rest, and both the...Ch. 11 - Predict/Calculate A torque of 13 N m is applied...Ch. 11 - Predict/Explain Suppose the person in Example...Ch. 11 - A string that passes over a pulley has a 0.321-kg...Ch. 11 - To loosen the lid on a jar of jam 7.6 cm in...Ch. 11 - BIO Predict/Calculate Referring to the person...Ch. 11 - Prob. 24PCECh. 11 - Prob. 25PCECh. 11 - Predict/Calculate A schoolyard teeter-totter with...Ch. 11 - A 0.122-kg remote control 23.0 cm long rests on a...Ch. 11 - Predict/Calculate A 0.16-kg meterstick is held...Ch. 11 - Prob. 29PCECh. 11 - A uniform metal rod, with a mass of 2.0 kg and a...Ch. 11 - Prob. 31PCECh. 11 - In Figure 11-46 two acrobats perform a balancing...Ch. 11 - BIO Forces in the Foot In Figure 11-47 we see the...Ch. 11 - A stick with a mass of 0.214 kg and a length of...Ch. 11 - Prob. 35PCECh. 11 - If the cat in Example 11-9 has a mass of 3.9 kg,...Ch. 11 - Prob. 37PCECh. 11 - Maximum Overhang Three identical, uniform books of...Ch. 11 - A baseball bat balances 71.1 cm from one end. If a...Ch. 11 - A 2.85-kg bucket is attached to a rope wrapped...Ch. 11 - A child exerts a tangential 53 4-N force on the...Ch. 11 - Predict/Calculate You pull downward with a force...Ch. 11 - One elevator arrangement includes the passenger...Ch. 11 - Atwood's Machine An Atwoods machine consists of...Ch. 11 - A 1.4-kg bicycle tire with a radius of 33 cm...Ch. 11 - Jogger 1 in Figure 11-51 has a mass of 65.3 kg and...Ch. 11 - Predict/Calculate Suppose jogger 3 in Figure 11-51...Ch. 11 - A torque of 0.12 N m is applied to an egg beater...Ch. 11 - A windmill has an initial angular momentum of 8500...Ch. 11 - Two gerbils run in place with a linear speed of...Ch. 11 - Predict/Explain A student rotates on a...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - As an ice skater begins a spin, his angular speed...Ch. 11 - A disk-shaped merry-go-round of radius 2.63 m and...Ch. 11 - A student sits at rest on a piano stool that can...Ch. 11 - Predict/Calculate A turntable with a moment of...Ch. 11 - A student on a piano stool rotates freely with an...Ch. 11 - Walking on a Merry-Go-Round A child of mass m...Ch. 11 - Predict/Explain Two spheres of equal mass and...Ch. 11 - Turning a doorknob through 0.25 of a revolution...Ch. 11 - A person exerts a tangential force of 36.1 N on...Ch. 11 - To prepare homemade ice cream a crank must be...Ch. 11 - Power of a Dental Drill A popular make of dental...Ch. 11 - For a home repair job you must turn the handle of...Ch. 11 - The L-shaped object in Figure 11-40 consists of...Ch. 11 - The rectangular object in Figure 11-41 consists of...Ch. 11 - Predict/Calculate A circular saw blade accelerates...Ch. 11 - CE A uniform disk stands upright on its edge, and...Ch. 11 - CE Consider the two rotating systems shown in...Ch. 11 - CE Predict/Explain A disk and a hoop (bicycle...Ch. 11 - CE A beetle sits at the nm of a turntable that is...Ch. 11 - After getting a drink of water a hamster jumps...Ch. 11 - A 47.0-kg uniform rod 4.25 m long is attached to a...Ch. 11 - Prob. 75GPCh. 11 - BIO The Masseter Muscle The masseter muscle, the...Ch. 11 - Exercising the Biceps You are designing exercise...Ch. 11 - Prob. 78GPCh. 11 - In Example 11-11, suppose the ladder is uniform,...Ch. 11 - When you arrive at Dukes Dude Ranch you are...Ch. 11 - Prob. 81GPCh. 11 - Flats Versus Heels A woman might wear a pair of...Ch. 11 - BIO A young girl sits at the edge of a dock by the...Ch. 11 - BIO Deltoid Muscle A crossing guard holds a STOP...Ch. 11 - BIO Triceps To determine the force a persons...Ch. 11 - Predict/Calculate Suppose partial melting of the...Ch. 11 - A bicycle wheel of radius R and mass M is at rest...Ch. 11 - A 0.101-kg yo-yo has an outer radius R that is...Ch. 11 - BIO Peak Pedaling Torque The downward force...Ch. 11 - A cylinder of mass m and radius r has a string...Ch. 11 - Bricks in Equilibrium Consider a system of four...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - Referring to Example 11-14 Suppose the mass of the...Ch. 11 - Prob. 97PPCh. 11 - Referring to Quick Example 11-22 Suppose the child...Ch. 11 - Referring to Quick Example 11-22 Suppose...
Additional Science Textbook Solutions
Find more solutions based on key concepts
42. (II) A box is given a push so that it slides across the floor. How far will it go, given that the coefficie...
Physics: Principles with Applications
A 500- resistor, an uncharged 1.50-F capacitor and a 6.16-V emf are connected in series, (a) What is the initia...
College Physics
A student whos confused about voltage and current tries to measure the voltage across a lighted lightbulb by in...
Essential University Physics (3rd Edition)
35. The basic metric unit of length is ______.
Applied Physics (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A garage door is mounted on an overhead rail as shown below. The wheels at A and B have rusted so that they do not roll, but rather slide along the track. The coefficient of kinetic friction is 0.50. The distance between the wheels is 2.00 m, and each are 0.50 from the vertical sides of the door. The door is uniform and weighs 977 N. It is pushed to the left at constant speed by an external horizontal force. If the distance h is 1.54 m: a. What is the vertical component of the force exerted on the wheel A by the track? b. What is the vertical component of the force exerted on the wheel B by the track? c. Find the maximum value h can have without causing one wheel to leave the track. A В K 2.00 m h k- 3.00 m Figure 3. The two wheel track of a rusted garage door.arrow_forwardA 29.8 kg child sits on a 6.0 m long teeter-totter at a point 1.5 m from the pivot point (at the center of the teeter-totter). On the other side of the pivot point, an adult pushes straight down on the teeter-totter with a force of 185 N. Determine the direction the teeter-totter will rotate if the adult applies the force at a distance of each of the following from the pivot. (Assume the teeter-totter is horizontal when the adult applies the force and that the child's weight applies a clockwise torque.) (а) 1.0 m clockwise counterclockwise (b) 2.0 m clockwise counterclockwise (с) 3.0 m clockwise counterclockwisearrow_forwardA 13.8 kg child sits on a 6.0 m long teeter-totter at a point 1.5 m from the pivot point (at the center of the teeter-totter). On the other side of the pivot point, an adult pushes straight down on the teeter-totter with a force of 180 N. Determine the direction the teeter-totter will rotate if the adult applies the force at a distance of each of the following from the pivot. (Assume the teeter-totter is horizontal when the adult applies the force and that the child's weight applies a clockwise torque.) (a) 1.0 m O clockwise O counterclockwise (b) 2.0 m O clockwise O counterclockwise (c) 3.0 m O clockwise O counterclockwisearrow_forward
- A coin rests 15.0 cm from the center of a turn-table. The coefficient of static friction between the coin and turntable surface is 0.350. The turntable starts from rest at t = 0 and rotates with a constant angular acceleration of 0.730 rad/s2. (A) Once the turntable starts to rotate, what force causes the centripetal acceleration when the coin is stationary relative to the turntable? Under what condition does the coin begin to move relative to the turntable? (B) After what period of time will the coin start to slip on the turntable?arrow_forwardA 120-kg refrigerator, 2.00 m tall and 85.0 cm wide, has its center of mass at its geometrical center. You are attempting to slide it along the floor by pushing horizontally on the side of the refrigerator. The coefficient of static friction between the floor and the refrigerator is 0.300. Depending on where you push, the refrigerator may start to tip over before it starts to slide along the floor. What is the highest distance above the floor that you can push the refrigerator so that it won't tip before it begins to slide? (in meters)arrow_forwardThe County Fair Swing carries the mass of riders and chairs in an unchanging circular path in an horizontal plane while suspended by mass-less cables. Let's assume that: Each chair with riders is supported by a single cable The tension in the cable equals 2.5 x the total weight riders and chair The radius of the circular path is 16.6 meters Determine the rate of rotation in radians per second.arrow_forward
- You are to design a rotating cylindrical axle to lift 7.7-N buckets of cement from the ground to a rooftop 3.8 m above the ground. The buckets will be attached to a hook on the free end of a cable that wraps around the rim of the axle; as the axle turns, the buckets will rise. If instead the axle must give the buckets an upward acceleration of 6.5 m/s? with a steady velocity of 3.2 cm/s turning at 3.1 rpm, what should the angular acceleration (rad/s?) of the axle be?arrow_forwardA horizontal circular platform rotates counterclockwise about its axis at the rate of 0.897 rad/s. You, with a mass of 74.1 kg. walk clockwise around the platform along its edge at the speed of 1.15 m/s with respect to the platform. Your 20.3 kg poodle also walks clockwise around the platform, but along a circle at half the platform's radius and at half your linear speed with respect to the platform. Your 17.3 kg mutt, on the other hand, sits still on the platform at a position that is 3/4 of the platform's radius from the center. Model the platform as a uniform disk with mass 92.7 kg and radius 1.99 m. Calculate the total angular momentum Lot of the system. Lot 2 kg-m²/sarrow_forwardA luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 25.5° with the horizontal. A piece of luggage having mass 30.0 kg is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 36.5 s. Calculate the force of static friction between the bag and the carousel. (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to another position, 7.94 m from the axis of rotation. Now going around once in every 33.8 s, the bag is on the verge of slipping. Calculate the coefficient of static friction exerted by the carousel on the bag.arrow_forward
- A tightrope walker is walking between two buildings holding a pole with length L = 17.5 m, and mass m, = 17.5 kg. The daredevil grips the pole with each hand a distance d = 0.550 m from the center of the pole. A bird of mass 590 g lands on the very end of the left-hand side of the pole. m = Assuming the daredevil applies upward forces with the left and right hands in a direction perpendicular to the pole, what magnitude of force Fjeft and Fright must the left and right hand exert to counteract the torque of the bird? Fjeft N Fright N %3D Let the +x-axis point in the walking direction and pass through the center of the pole, and let the +z-axis point straight up. What are the directions of the torque vectors due to the bird, the left hand, and the right hand if the x-axis is the rotation axis? The torque vector due to the bird's weight points along the The torque vector due to the force of the right hand points along the The torque vector due to the force of the left hand points along…arrow_forwardA person pushing a uniformly-loaded 30.2 kg wheelbarrow of length L with pushing force P is attempting to get it over a step. The maximum horizontal force that the person can apply is Px = 553 N. What is the maximum height h of the step, expressed as a fraction n of the wheel's radius R, that the person can get the wheelbarrow over? The gravitational acceleration is g = 9.81 m/s². 10 P L R h = nR h = Rarrow_forwardIn the figure, block 1 has mass m₁ = 467g, block 2 has mass m₂ = 598 g, and the pulley is on a frictionless horizontal axle and has radius R = 5.00 cm. When released from rest, block 2 falls 71.0 cm in 2.80 s without the cord slipping on the pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension T₂ (the tension force on the block 2) and (c) tension T₁ (the tension force on the block 1)? (d) What is the magnitude of the pulley's angular acceleration? (e) What is its rotational inertia? Caution: Try to avoid rounding off answers along the way to the solution. Use g = 9.81 m/s². (a) Number i (b) Number i (c) Number i (d) Number i (e) Number i m₁ m₂ Units Units Units Units Units û îarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY