
Write the valence-electron configuration of each of the following elements, basing your answer on the element’s location on the periodic table.
uranium,
manganese,

(a)
Interpretation:
The valence shell electronic configuration of the given element, based on its location on the periodic table, is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.
Answer to Problem 66QAP
The valence shell electronic configuration of the given element, uranium, is
Explanation of Solution
The valence shell electronic configuration of uranium is underlined in the actual configuration of uranium which is shown as,
The valence shell electronic configuration of uranium that has atomic number equal to

(b)
Interpretation:
The valence shell electronic configuration of the given element, based on its location on the periodic table, is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.
Answer to Problem 66QAP
The valence shell electronic configuration of the given element, manganese, is
Explanation of Solution
The valence shell electronic configuration of manganese is underlined in the actual configuration of manganese which is shown as,
The valence shell electronic configuration of manganese that has atomic number equal to

(c)
Interpretation:
The valence shell electronic configuration of the given element, based on its location on the periodic table, is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.
The valence shell electronic configuration of the given element, mercury, is
The valence shell electronic configuration of mercury is underlined in the actual configuration of mercury which is shown as,
The valence shell electronic configuration of mercury that has atomic number equal to
Answer to Problem 66QAP
The valence shell electronic configuration of the given element, mercury, is
Explanation of Solution
The valence shell electronic configuration of mercury is underlined in the actual configuration of mercury which is shown as,
The valence shell electronic configuration of mercury that has atomic number equal to

(d)
Interpretation:
The valence shell electronic configuration of the given element, based on its location on the periodic table, is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron in an orbital is given by the electronic configuration of that atom.
The electrons that are present in the outermost shell of an atom are known as valence electrons. The outermost shell of an atom is known as valence shell. The valence electrons are more loosely held than the electrons which are closer to the nucleus.
Answer to Problem 66QAP
The valence shell electronic configuration of the given element, francium, is
Explanation of Solution
The valence shell electronic configuration of francium is underlined in the actual configuration of francium which is shown as,
The valence shell electronic configuration of francium that has atomic number equal to
Want to see more full solutions like this?
Chapter 11 Solutions
EBK INTRODUCTORY CHEMISTRY
- Will NBS (and heat or light) work for this reaction, or do we have to use Br2?arrow_forwardHAND DRAWarrow_forwardPredict the major products of the following organic reaction: Some important notes: Δ CN ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. ONO reaction. Click and drag to start drawing a structure.arrow_forward
- The following product was made from diethyl ketone and what other reagent(s)? £ HO 10 2-pentyne 1-butyne and NaNH2 ☐ 1-propanol ☐ pyridine butanal ☐ pentanoatearrow_forwardWhich pair of reagents will form the given product? OH X + Y a. CH3 b. CH2CH3 ༧་་ C. CH3- CH2CH3 d.o6.(རི॰ e. CH3 OCH2CH3 -MgBr f. CH3-MgBr g. CH3CH2-MgBr -C-CH3 CH2CH3arrow_forwardQuestion 3 What best describes the product of the following reaction? 1. CH3CH2MgBr (2 eq) 2. H a new stereocenter will not be formed a new stereocenter will be formed an alkyl halide will result an alkane will result an aromatic compound will result 1 ptsarrow_forward
- Rank the following from most to least reactive toward nucleophilic attack. 1. [Select] [Select] 2. Acyl halide Aldehyde 3. Carboxylate ion 4. Carboxylic acid Ketone 5. [Select]arrow_forwardQuestion 10 1 pts Which of the following is the most accurate nomenclature? 1-hydroxy-1-methyldecane-4,7-dione 2-hydroxy-2-methyldecane-5,8-dione 4,6-dioxo-2-methyldecane-2-ol 9-hydroxy-9-methyldecane-3,6-dione 8-hydroxy-8-methylnonane-3,6-dione OHarrow_forwardCould you please explain whether my thinking is correct or incorrect regarding how I solved it? Please point out any mistakes in detail, with illustrations if needed.arrow_forward
- What are the most proper reagents to achieve these products? سد 1. 2. OH ○ 1. BrMgC6H6; 2. H+ ○ 1. BrMgCH2CH2CH2CH2CH3; 2. H+ O 1. CH3CH2CHO; 2. H+ O 1. BrMgCH2CH3; 2. H+arrow_forwardProvide the IUPAC (systematic) name only for the following compound. Dashes, commas, and spaces must be correct. Harrow_forwardPlease use the nernst equation to genereate the Ion Selective Electrode Analysis standard curve within my excel spread sheet. Nernst Equation: E = Eo + m (ln a) Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EaREe1-PfGNKq1Cbink6kkYB5lBy05hEaE3mbGPUb22S6w?rtime=zQaSX3xY3Ugarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





