EBK WEBASSIGN FOR ZUMDAHL'S CHEMICAL PR
8th Edition
ISBN: 9780357119099
Author: ZUMDAHL
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 65E
Consider the concentration cell shown below. Calculatethe cell potential at 25°C when the concentration of
a. 1.0 M d.
b. 2.0 M e. Calculate the potential when both
c. 0.10 M solutions are 2.5 M in
For each case, identify the cathode, the anode, and thedirection in which electrons flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
EBK WEBASSIGN FOR ZUMDAHL'S CHEMICAL PR
Ch. 11 - Prob. 1DQCh. 11 - Prob. 2DQCh. 11 - You want to “plate out” nickel metal from a nickel...Ch. 11 - A copper penny can be dissolved in nitric acid but...Ch. 11 - Sketch a cell that forms iron metal from iron(II)...Ch. 11 - Which of the following is the best reducing agent:...Ch. 11 - You are told that metal A is a better reducing...Ch. 11 - Explain the following relationships: G and w, cell...Ch. 11 - Explain why cell potentials are not multiplied by...Ch. 11 - What is the difference between andWhen is equal to...
Ch. 11 - Prob. 11DQCh. 11 - Look up the reduction potential for Fe3+toFe2+ ....Ch. 11 - Prob. 13DQCh. 11 - Is the following statement true or false?...Ch. 11 - What is electrochemistry? What are redox...Ch. 11 - When magnesium metal is added to a beaker of...Ch. 11 - Prob. 17ECh. 11 - How can you construct a galvanic cell from two...Ch. 11 - Prob. 19ECh. 11 - Prob. 20ECh. 11 - Prob. 21ECh. 11 - Consider the following galvanic cells: For each...Ch. 11 - Prob. 23ECh. 11 - Prob. 24ECh. 11 - Answer the following questions using data from...Ch. 11 - Prob. 26ECh. 11 - Using data from Table 11.1, place the following in...Ch. 11 - Prob. 28ECh. 11 - Use the table of standard reduction potentials...Ch. 11 - Use the table of standard reduction potentials...Ch. 11 - Prob. 31ECh. 11 - A patent attorney has asked for your advice...Ch. 11 - The free energy change for a reaction G is an...Ch. 11 - The equation also can be applied to...Ch. 11 - Prob. 35ECh. 11 - Glucose is the major fuel for most living cells....Ch. 11 - Direct methanol fuel cells (DMFCs) have shown...Ch. 11 - The overall reaction and standard cell potential...Ch. 11 - Calculate the maximum amount of work that can...Ch. 11 - Prob. 40ECh. 11 - Prob. 41ECh. 11 - Chlorine dioxide (ClO2) , which is produced by...Ch. 11 - The amount of manganese in steel is determined...Ch. 11 - The overall reaction and equilibrium constant...Ch. 11 - Prob. 45ECh. 11 - Calculate for the reaction...Ch. 11 - A disproportionation reaction involves a substance...Ch. 11 - Calculate for the following half-reaction:...Ch. 11 - For the following half-reaction AlF63+3eAl+6F...Ch. 11 - Prob. 50ECh. 11 - The solubility product for CuI(s) is 1.11012....Ch. 11 - Explain the following statement: determines...Ch. 11 - Calculate the pH of the cathode compartment for...Ch. 11 - Consider the galvanic cell based on the...Ch. 11 - Prob. 55ECh. 11 - Consider the following galvanic cell at 25°C:...Ch. 11 - The black silver sulfide discoloration of...Ch. 11 - Consider the cell described below:...Ch. 11 - Consider the cell described below:...Ch. 11 - Prob. 60ECh. 11 - Prob. 61ECh. 11 - Prob. 62ECh. 11 - What are concentration cells? What is in a...Ch. 11 - A silver concentration cell is set up at 25°C as...Ch. 11 - Consider the concentration cell shown below....Ch. 11 - Prob. 66ECh. 11 - Prob. 67ECh. 11 - An electrochemical cell consists of a nickel metal...Ch. 11 - You have a concentration cell in which the cathode...Ch. 11 - Consider a galvanic cell at standard conditions...Ch. 11 - An electrochemical cell consists of a zinc metal...Ch. 11 - How long will it take to plate out each of the...Ch. 11 - What mass of each of the following substances can...Ch. 11 - It took 2.30 min with a current of 2.00 A to plate...Ch. 11 - The electrolysis of BiO+ produces pure bismuth....Ch. 11 - A single HallHeroult cell (as shown in Fig. 11.22)...Ch. 11 - A factory wants to produce 1.00103 kg barium...Ch. 11 - Why is the electrolysis of molten salts much...Ch. 11 - What reaction will take place at the cathode and...Ch. 11 - What reaction will take place at the cathode and...Ch. 11 - Prob. 81ECh. 11 - a. In the electrolysis of an aqueous solution of...Ch. 11 - A solution at 25°C contains 1.0 M...Ch. 11 - An aqueous solution of an unknown salt of...Ch. 11 - Consider the following half-reactions: A...Ch. 11 - An unknown metal M is electrolyzed. It took 74.1 s...Ch. 11 - Electrolysis of an alkaline earth metal chloride...Ch. 11 - Prob. 88ECh. 11 - What volume of F2 gas, at 25°C and 1.00 atm, is...Ch. 11 - Prob. 90ECh. 11 - In the electrolysis of a sodium chloride solution,...Ch. 11 - What volumes of H2(g)andO2(g) at STP are...Ch. 11 - Copper can be plated onto a spoon by placing the...Ch. 11 - Prob. 94AECh. 11 - Prob. 95AECh. 11 - Prob. 96AECh. 11 - Prob. 97AECh. 11 - Prob. 98AECh. 11 - Prob. 99AECh. 11 - Prob. 100AECh. 11 - Prob. 101AECh. 11 - Prob. 102AECh. 11 - Prob. 103AECh. 11 - Prob. 104AECh. 11 - In 1973 the wreckage of the Civil War ironclad...Ch. 11 - A standard galvanic cell is constructed so that...Ch. 11 - Prob. 107AECh. 11 - Prob. 108AECh. 11 - Prob. 109AECh. 11 - Prob. 110AECh. 11 - Prob. 111AECh. 11 - Prob. 112AECh. 11 - Prob. 113AECh. 11 - Consider a galvanic cell based on the following...Ch. 11 - Prob. 115AECh. 11 - Prob. 116AECh. 11 - Prob. 117AECh. 11 - Prob. 118AECh. 11 - Prob. 119CPCh. 11 - Prob. 120CPCh. 11 - A zinccopper battery is constructed as follows:...Ch. 11 - Prob. 122CPCh. 11 - Prob. 123CPCh. 11 - Prob. 124CPCh. 11 - Prob. 125CPCh. 11 - Prob. 126CPCh. 11 - Prob. 127CPCh. 11 - Prob. 128CPCh. 11 - Prob. 129CPCh. 11 - Prob. 130CPCh. 11 - Prob. 131CPCh. 11 - Prob. 132MPCh. 11 - Prob. 133MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- It took 150. s for a current of 1.25 A to plate out 0.109 g of a metal from a solution containing its cations. Show that it is not possible for the cations to have a charge of 1+.arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forwardCalculate the theoretical potential of each of the following cells. Is the cell reaction spontaneous as written or spontaneous in the opposite direction? (a) Pt|Cr3+(2.00 10-4M),Cr2+(1.50 10-3 M)||Pb2+ (5.60 0215 10-2M)|Pb (b) Hg|Hg22+(2.00 10-2 M)||H+(1.50 10-2 M),V3+ (2.00 10-2M),VO2+(3.00 10-3M)|Pt (e) Pt|Fe3+(3.00 10-2 M), Fe2+ (4.00 10-5M)||Sn2+ (3.50 10-2M), Sn4+ (5.50 10-4 M)|Ptarrow_forward
- An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag+] = 1.0 M separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0 M NH3 that is also 0.010 M in Cu(NH3)42+, what is the cell potential at 25C? Cu2+(aq)+4NH3(aq)Cu(NH3)42+(aq)K=1.01013arrow_forwardCalculate the standard cell potential of the following cell at 25C. Sn(s)Sn2+(aq)I2(aq)I(aq)arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forward
- The table below lists the cell potentials for the 10 possible galvanic cells assembled from the metals A. B. C. D. and E. and their respective 1.00 M 2+ ions in solution. Using the data in the table, establish a standard reduction potential table similar to Table 17-1 in the text. Assign a reduction potential of 0.00 V to the half-reaction that falls in the middle of the series. You should get two different tables. Explain why, and discuss what you could do to determine which table is correct. A(s)in A2+(aq) B(s)in B2+(aq) C(s)in V2+(aq) D(s)in D2+(aq) E(s)in E2+(aq) 0.28V 0.81V 0.13V 1.00V D(s)in D2+(aq) 0.72V 0.19V 1.13V C(s)in V2+(aq) 0.41V 0.94V B(s)in B2+(aq) 0.53Varrow_forwardWhat is the cell potential (Ecell) of a spontaneous cell that is run at 25C and contains [Cr3+] = 0.10 M and [Ag+] = 1.0 104 M?arrow_forwardWhat is the maximum work you can obtain from 30.0 g of nickel in the following cell when the cell potential is 0.97 V? Ni(s)Ni2+(aq)Ag+(aq)Ag(s)arrow_forward
- Galvanic cells harness spontaneous oxidationreduction reactions to produce work by producing a current. They do so by controlling the flow of electrons from the species oxidized to the species reduced. How is a galvanic cell designed? What is in the cathode compartment? The anode compartment? What purpose do electrodes serve? Which way do electrons always flow in the wire connecting the two electrodes in a galvanic cell? Why is it necessary to use a salt bridge or a porous disk in a galvanic cell? Which way do cations flow in the salt bridge? Which way do the anions flow? What is a cell potential and what is a volt?arrow_forwardCalculate the standard cell potential of the cell corresponding to the oxidation of oxalic acid, H2C2O4, by permanganate ion. MnO4. 5H2C2O4(aq)+2MnO4(aq)+6H+(aq)10CO2(g)+2Mn2+(aq)+8H2O(l) See Appendix C for free energies of formation: Gf for H2C2O4(aq) is 698 kJ.arrow_forwardHalide ions can he deposited at a silver anode, the reaction being Ag(s) + X- AgX(s) +e- Suppose that a cell was formed by immersing a silver anode in an analyte solution that was 0.0250 M Cl-,Br-, and I -ions and connecting the half-cell to a saturated calomel cathode via a salt bridge. (a) Which halide would form first and at what potential? Is the cell galvanic or electrolytic? (b) Could I- and Br- be separated quantitatively? (Take 1.00 l0-5 M as the criterion for quantitative removal of an ion.) If a separation is feasible, what range of cell potential could he used? (c) Repeat part (b) for I- and Cl-. (d) Repeat part (b) for Br- and Cl-.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY