Practical Management Science, Loose-leaf Version
5th Edition
ISBN: 9781305631540
Author: WINSTON, Wayne L.; Albright, S. Christian
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 63P
Summary Introduction
To determine: The number of batches of the drug that the firm should produce to maximize the annual expected profit.
Introduction: Simulation model is the digital prototype of the physical model that helps to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A company is operating in two unrelated businesses. The first one is making common salt, which is sold in one kilogram consumer packs. The second business is making readymade garments. The owner of the businesses has decided to implement Materials Requirement Planning (MRP) in one of the two businesses, which is likely to give him greater benefit. Assuming that the current turnover and profits of both the units are comparable, compare the relative benefits and limitations of Materials Requirement Planning (MRP) for these two businesses.
A television network earns an average of $25 million each season from a hit program and loses an average of $8 million each season on a program that turns out to be a flop. Of all programs picked up by this network in recent years, 25% turn out to be hits and 75% turn out to be flops. At a cost of C dollars, a market research firm will analyze a pilot episode of a prospec- tive program and issue a report predicting whether the given programwill end up being a hit. If the program is actually going to be a hit, there is a 75% chance that the market researchers will predict the program to be a hit. If the program is actually going to be a flop, there is only a 30% chance that the market researchers will predict the program to be a hit.a. What is the maximum value of C that the network should be willing to pay the market research firm?b. Calculate and interpret EVPI for this decision problem.
After meeting with the regional sales managers, Lauretta Anderson, president of Cowpie Computers, Inc., you find that she believes that the probability that sales will grow by 10% in the next year is 0.70. After coming to this conclusion, she receives a report that John Cadariu of Minihard Software, Inc., has just announced a new operating system that will be available for customers in 8 months. From past history she knows that in situations where growth has eventually occurred, new operating systems have been announced 30% of the time. However, in situations where growth has not eventually occurred, new operating systems have been announced 10% of the time. Based on all these facts, what is the probability that sales will grow by 10%?
Chapter 11 Solutions
Practical Management Science, Loose-leaf Version
Ch. 11.2 - If the number of competitors in Example 11.1...Ch. 11.2 - In Example 11.1, the possible profits vary from...Ch. 11.2 - Referring to Example 11.1, if the average bid for...Ch. 11.2 - See how sensitive the results in Example 11.2 are...Ch. 11.2 - In Example 11.2, the gamma distribution was used...Ch. 11.2 - Prob. 6PCh. 11.2 - In Example 11.3, suppose you want to run five...Ch. 11.2 - In Example 11.3, if a batch fails to pass...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...
Ch. 11.3 - In the cash balance model from Example 11.5, the...Ch. 11.3 - Prob. 12PCh. 11.3 - Prob. 13PCh. 11.3 - The simulation output from Example 11.6 indicates...Ch. 11.3 - Prob. 15PCh. 11.3 - Referring to the retirement example in Example...Ch. 11.3 - A European put option allows an investor to sell a...Ch. 11.3 - Prob. 18PCh. 11.3 - Prob. 19PCh. 11.3 - Based on Kelly (1956). You currently have 100....Ch. 11.3 - Amanda has 30 years to save for her retirement. At...Ch. 11.3 - In the financial world, there are many types of...Ch. 11.3 - Suppose you currently have a portfolio of three...Ch. 11.3 - If you own a stock, buying a put option on the...Ch. 11.3 - Prob. 25PCh. 11.3 - Prob. 26PCh. 11.3 - Prob. 27PCh. 11.3 - Prob. 28PCh. 11.4 - Prob. 29PCh. 11.4 - Seas Beginning sells clothing by mail order. An...Ch. 11.4 - Based on Babich (1992). Suppose that each week...Ch. 11.4 - The customer loyalty model in Example 11.9 assumes...Ch. 11.4 - Prob. 33PCh. 11.4 - Suppose that GLC earns a 2000 profit each time a...Ch. 11.4 - Prob. 35PCh. 11.5 - A martingale betting strategy works as follows....Ch. 11.5 - The game of Chuck-a-Luck is played as follows: You...Ch. 11.5 - You have 5 and your opponent has 10. You flip a...Ch. 11.5 - Assume a very good NBA team has a 70% chance of...Ch. 11.5 - Consider the following card game. The player and...Ch. 11.5 - Prob. 42PCh. 11 - Prob. 44PCh. 11 - You now have 10,000, all of which is invested in a...Ch. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Based on Marcus (1990). The Balboa mutual fund has...Ch. 11 - Prob. 50PCh. 11 - Prob. 52PCh. 11 - The annual demand for Prizdol, a prescription drug...Ch. 11 - Prob. 54PCh. 11 - The DC Cisco office is trying to predict the...Ch. 11 - Prob. 56PCh. 11 - Prob. 58PCh. 11 - You are considering a 10-year investment project....Ch. 11 - Prob. 61PCh. 11 - An automobile manufacturer is considering whether...Ch. 11 - Prob. 63PCh. 11 - Prob. 65PCh. 11 - Rework the previous problem for a case in which...Ch. 11 - Prob. 68PCh. 11 - The Tinkan Company produces one-pound cans for the...Ch. 11 - Prob. 70PCh. 11 - In this version of dice blackjack, you toss a...Ch. 11 - Prob. 76PCh. 11 - It is January 1 of year 0, and Merck is trying to...Ch. 11 - Suppose you are an HR (human resources) manager at...Ch. 11 - You are an avid basketball fan, and you would like...Ch. 11 - Suppose you are a financial analyst and your...Ch. 11 - Software development is an inherently risky and...Ch. 11 - Health care is continually in the news. Can (or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Play Things is developing a new Lady Gaga doll. The company has made the following assumptions: The doll will sell for a random number of years from 1 to 10. Each of these 10 possibilities is equally likely. At the beginning of year 1, the potential market for the doll is two million. The potential market grows by an average of 4% per year. The company is 95% sure that the growth in the potential market during any year will be between 2.5% and 5.5%. It uses a normal distribution to model this. The company believes its share of the potential market during year 1 will be at worst 30%, most likely 50%, and at best 60%. It uses a triangular distribution to model this. The variable cost of producing a doll during year 1 has a triangular distribution with parameters 15, 17, and 20. The current selling price is 45. Each year, the variable cost of producing the doll will increase by an amount that is triangularly distributed with parameters 2.5%, 3%, and 3.5%. You can assume that once this change is generated, it will be the same for each year. You can also assume that the company will change its selling price by the same percentage each year. The fixed cost of developing the doll (which is incurred right away, at time 0) has a triangular distribution with parameters 5 million, 7.5 million, and 12 million. Right now there is one competitor in the market. During each year that begins with four or fewer competitors, there is a 25% chance that a new competitor will enter the market. Year t sales (for t 1) are determined as follows. Suppose that at the end of year t 1, n competitors are present (including Play Things). Then during year t, a fraction 0.9 0.1n of the company's loyal customers (last year's purchasers) will buy a doll from Play Things this year, and a fraction 0.2 0.04n of customers currently in the market ho did not purchase a doll last year will purchase a doll from Play Things this year. Adding these two provides the mean sales for this year. Then the actual sales this year is normally distributed with this mean and standard deviation equal to 7.5% of the mean. a. Use @RISK to estimate the expected NPV of this project. b. Use the percentiles in @ RISKs output to find an interval such that you are 95% certain that the companys actual NPV will be within this interval.arrow_forwardA new edition of a very popular textbook will be published a year from now. The publisher currently has 1000 copies on hand and is deciding whether to do another printing before the new edition comes out. The publisher estimates that demand for the book during the next year is governed by the probability distribution in the file P10_31.xlsx. A production run incurs a fixed cost of 15,000 plus a variable cost of 20 per book printed. Books are sold for 190 per book. Any demand that cannot be met incurs a penalty cost of 30 per book, due to loss of goodwill. Up to 1000 of any leftover books can be sold to Barnes and Noble for 45 per book. The publisher is interested in maximizing expected profit. The following print-run sizes are under consideration: 0 (no production run) to 16,000 in increments of 2000. What decision would you recommend? Use simulation with 1000 replications. For your optimal decision, the publisher can be 90% certain that the actual profit associated with remaining sales of the current edition will be between what two values?arrow_forwardAt the beginning of each week, a machine is in one of four conditions: 1 = excellent; 2 = good; 3 = average; 4 = bad. The weekly revenue earned by a machine in state 1, 2, 3, or 4 is 100, 90, 50, or 10, respectively. After observing the condition of the machine at the beginning of the week, the company has the option, for a cost of 200, of instantaneously replacing the machine with an excellent machine. The quality of the machine deteriorates over time, as shown in the file P10 41.xlsx. Four maintenance policies are under consideration: Policy 1: Never replace a machine. Policy 2: Immediately replace a bad machine. Policy 3: Immediately replace a bad or average machine. Policy 4: Immediately replace a bad, average, or good machine. Simulate each of these policies for 50 weeks (using at least 250 iterations each) to determine the policy that maximizes expected weekly profit. Assume that the machine at the beginning of week 1 is excellent.arrow_forward
- The game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forwardBased on Babich (1992). Suppose that each week each of 300 families buys a gallon of orange juice from company A, B, or C. Let pA denote the probability that a gallon produced by company A is of unsatisfactory quality, and define pB and pC similarly for companies B and C. If the last gallon of juice purchased by a family is satisfactory, the next week they will purchase a gallon of juice from the same company. If the last gallon of juice purchased by a family is not satisfactory, the family will purchase a gallon from a competitor. Consider a week in which A families have purchased juice A, B families have purchased juice B, and C families have purchased juice C. Assume that families that switch brands during a period are allocated to the remaining brands in a manner that is proportional to the current market shares of the other brands. For example, if a customer switches from brand A, there is probability B/(B + C) that he will switch to brand B and probability C/(B + C) that he will switch to brand C. Suppose that the market is currently divided equally: 10,000 families for each of the three brands. a. After a year, what will the market share for each firm be? Assume pA = 0.10, pB = 0.15, and pC = 0.20. (Hint: You will need to use the RISKBINOMLAL function to see how many people switch from A and then use the RISKBENOMIAL function again to see how many switch from A to B and from A to C. However, if your model requires more RISKBINOMIAL functions than the number allowed in the academic version of @RISK, remember that you can instead use the BENOM.INV (or the old CRITBENOM) function to generate binomially distributed random numbers. This takes the form =BINOM.INV (ntrials, psuccess, RAND()).) b. Suppose a 1% increase in market share is worth 10,000 per week to company A. Company A believes that for a cost of 1 million per year it can cut the percentage of unsatisfactory juice cartons in half. Is this worthwhile? (Use the same values of pA, pB, and pC as in part a.)arrow_forwardDilberts Department Store is trying to determine how many Hanson T-shirts to order. Currently the shirts are sold for 21, but at later dates the shirts will be offered at a 10% discount, then a 20% discount, then a 40% discount, then a 50% discount, and finally a 60% discount. Demand at the full price of 21 is believed to be normally distributed with mean 1800 and standard deviation 360. Demand at various discounts is assumed to be a multiple of full-price demand. These multiples, for discounts of 10%, 20%, 40%, 50%, and 60% are, respectively, 0.4, 0.7, 1.1, 2, and 50. For example, if full-price demand is 2500, then at a 10% discount customers would be willing to buy 1000 T-shirts. The unit cost of purchasing T-shirts depends on the number of T-shirts ordered, as shown in the file P10_36.xlsx. Use simulation to determine how many T-shirts the company should order. Model the problem so that the company first orders some quantity of T-shirts, then discounts deeper and deeper, as necessary, to sell all of the shirts.arrow_forward
- You now have 5000. You will toss a fair coin four times. Before each toss you can bet any amount of your money (including none) on the outcome of the toss. If heads comes up, you win the amount you bet. If tails comes up, you lose the amount you bet. Your goal is to reach 15,000. It turns out that you can maximize your chance of reaching 15,000 by betting either the money you have on hand or 15,000 minus the money you have on hand, whichever is smaller. Use simulation to estimate the probability that you will reach your goal with this betting strategy.arrow_forwardLarge-scale integrated (LSI) circuit chips are made in one department of an electronics firm. These chips are incorporated into analog devices that are then encased in epoxy. The yield is not particularly good for LSI manufacture, so the AQL specified by that department is 0.15 while the LTPD acceptable by the assembly department is 0.40. Assume the company is willing to accept a consumer's risk of 10 percent and a producer's risk of 5 percent. Find the sample size. Use Exhibit 10.16. Note: if the exact value of the computed LTPD ÷ AOQ ratio does not appear in Exhibit 10.16, use the next higher ratio. Note: Round up your answer to the next whole number. How would you tell someone to do the test?arrow_forwardNick is considering buying a new bicycle. Here are his options: Bike A - costs $100. It has a 60% chance of breaking down in the next year. Bike B - costs $200. It has a 20% chance of breaking down in the next year. Bike C - costs $400. It has a 15% chance of breaking down in the next year. Which bike should Nick purchase based on expected utility theory of repair costs?arrow_forward
- Hayworth Corporation has Just segmented last year's income statement into its ten product lines. The chief executive officer (CEO) is curlous as to what effect dropping one of the product lines at the beginning of last year would have had on overall company profit. What is the best number for the CEO to look at to determine the effect of this elimination on the net operating income of the company as a whole? Multiple Choice the product line's sales dollars the product line's contribution margin the product line's segment margin the product line's segment mergin minus an allocated portion of common fixed expensesarrow_forwardBarbara Flynn sells papers at a newspaper stand for $0.40. The papers cost her $0.30, giving her a $0.10 profit on each one she sells. From past experience Barbara knows that: a) 20% of the time she sells 150 papers. b) 20% of the time she sells 200 papers. c) 30% of the time she sells 250 papers. d) 30% of the time she sells 300 papers. Assuming that Barbara believes the cost of a lost sale to be $0.05 and any unsold papers cost her $0.30 and she orders 250 papers. Use the following random numbers: 14, 4, 13, 9, and 25 for simulating Barbara's profit. (Note: Assume the random number interval begins at 01 and ends at 00.) Based on the given probability distribution and the order size, for the given random number Barbara's sales and profit are (enter your responses for sales as integers and round all profit responses to two decimal places): Random Number Sales Profit 14 4 13 9 25arrow_forwardTo purchase new processing equipment, a manager must decide on the number of spare parts to order with the new equipment. The spares cost $200 each, and any unused spares will have an expected salvage value of $50 each. The probability of usage can be described by this distribution: If a part fails and a spare is not available, two days will be needed to obtain a replacement and install it. The cost for idle equipment is $500 per day. What quantity of spares should be ordered? Probability of # of Spares Demand 30 1 40 .2 3 .1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License