Practical Management Science, Loose-leaf Version
5th Edition
ISBN: 9781305631540
Author: WINSTON, Wayne L.; Albright, S. Christian
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 62P
An automobile manufacturer is considering whether to introduce a new model called the Racer. The profitability of the Racer depends on the following factors:
- The fixed cost of developing the Racer is triangularly distributed with parameters $3, $4, and $5, all in billions.
- Year 1 sales are
normally distributed with mean 200,000 and standard deviation 50,000. Year 2 sales are normally distributed with mean equal to actual year 1 sales and standard deviation 50,000. Year 3 sales are normally distributed with mean equal to actual year 2 sales and standard deviation 50,000. - The selling price in year 1 is $25,000. The year 2 selling price will be 1.05[year 1 price + $50 (% diff1)] where % diff1 is the number of percentage points by which actual year 1 sales differ from expected year 1 sales. The 1.05 factor accounts for inflation. For example, if the year 1 sales figure is 180,000, which is 10 percentage points below the expected year 1 sales, then the year 2 price will be 1.05[25,000 + 50(− 10)] = $25,725. Similarly, the year 3 price will be 1.05[year 2 price + $50(% diff2)] where % diff2 is the percentage by which actual year 2 sales differ from expected year 2 sales.
- The variable cost in year 1 is triangularly distributed with parameters $ 10,000, $ 12,000, and $ 15,000, and it is assumed to increase by 5% each year.
Your goal is to estimate the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The University of Miami bookstore stocks textbooks in preparation for sales each semester. It normally relies on departmental forecasts and preregistration records to determine how many copies of a text are needed. Preregistration shows 85 operations management students enrolled, but bookstore manager Vaidy Jayaraman has second thoughts, based on his intuition and some historical evidence. Vaidy believes that the distribution of sales may range from 65 to 85 units, according to the following probability model:
Demand
65
70
75
80
85
Stock
0.1
0.25
0.2
0.1
0.35
This textbook costs the bookstore $70 and sells for $95 Any unsold copies can be returned to the publisher, less a restocking fee and shipping, for a net refund o $30.
a) Based on the given information, Vaidy's conditional profits table for the bookstore is:
Demand
65
70
75
80
85
Stock
0.1
0.25
0.2
0.1
0.35
65
?
?
?
?
?
The Eagles will play the Falcons on Sunday, September 12, 2021. Suppose the Eagles have a 40% chance of winning the game. Suppose football games cannot end in a tie.
(a) What is the random variable associated with this game?
(b) What is the mutually exclusive event in this case?
(c) Construct a well-labeled probability distribution table based on the outcomes of this game.
The Gorman Manufacturing Company must decide whether to manufacture a component part at its Milan, Michigan, plant or purchase the component part from a supplier. The resulting profit is dependent upon the demand for the product. The following payoff table shows the projected profit (in thousands of dollars):
state of nature
low demand
medium demnad
high demand
Decision alternative
s1
s2
s3
manufacture d1
-20
40
100
purchase d2
10
45
70
The state-of-nature probabilities are P(s1) = 0.35, P(s2) = 0.35, and P(s3) = 0.30.
a. A test market study of the potential demand for the product is expected to report either a favourable (F) or unfavourable (U) condition. The relevant conditional probabilities are as follows:
P(F|S1)=0.10 P (U|S1)=0.90
P(F|S2)=0.40 P (U|S2)=0.60
P(F|S3)=0.60 P (U|S3)=0.40
Compute the probabilities by completing the table
Sate of…
Chapter 11 Solutions
Practical Management Science, Loose-leaf Version
Ch. 11.2 - If the number of competitors in Example 11.1...Ch. 11.2 - In Example 11.1, the possible profits vary from...Ch. 11.2 - Referring to Example 11.1, if the average bid for...Ch. 11.2 - See how sensitive the results in Example 11.2 are...Ch. 11.2 - In Example 11.2, the gamma distribution was used...Ch. 11.2 - Prob. 6PCh. 11.2 - In Example 11.3, suppose you want to run five...Ch. 11.2 - In Example 11.3, if a batch fails to pass...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...
Ch. 11.3 - In the cash balance model from Example 11.5, the...Ch. 11.3 - Prob. 12PCh. 11.3 - Prob. 13PCh. 11.3 - The simulation output from Example 11.6 indicates...Ch. 11.3 - Prob. 15PCh. 11.3 - Referring to the retirement example in Example...Ch. 11.3 - A European put option allows an investor to sell a...Ch. 11.3 - Prob. 18PCh. 11.3 - Prob. 19PCh. 11.3 - Based on Kelly (1956). You currently have 100....Ch. 11.3 - Amanda has 30 years to save for her retirement. At...Ch. 11.3 - In the financial world, there are many types of...Ch. 11.3 - Suppose you currently have a portfolio of three...Ch. 11.3 - If you own a stock, buying a put option on the...Ch. 11.3 - Prob. 25PCh. 11.3 - Prob. 26PCh. 11.3 - Prob. 27PCh. 11.3 - Prob. 28PCh. 11.4 - Prob. 29PCh. 11.4 - Seas Beginning sells clothing by mail order. An...Ch. 11.4 - Based on Babich (1992). Suppose that each week...Ch. 11.4 - The customer loyalty model in Example 11.9 assumes...Ch. 11.4 - Prob. 33PCh. 11.4 - Suppose that GLC earns a 2000 profit each time a...Ch. 11.4 - Prob. 35PCh. 11.5 - A martingale betting strategy works as follows....Ch. 11.5 - The game of Chuck-a-Luck is played as follows: You...Ch. 11.5 - You have 5 and your opponent has 10. You flip a...Ch. 11.5 - Assume a very good NBA team has a 70% chance of...Ch. 11.5 - Consider the following card game. The player and...Ch. 11.5 - Prob. 42PCh. 11 - Prob. 44PCh. 11 - You now have 10,000, all of which is invested in a...Ch. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Based on Marcus (1990). The Balboa mutual fund has...Ch. 11 - Prob. 50PCh. 11 - Prob. 52PCh. 11 - The annual demand for Prizdol, a prescription drug...Ch. 11 - Prob. 54PCh. 11 - The DC Cisco office is trying to predict the...Ch. 11 - Prob. 56PCh. 11 - Prob. 58PCh. 11 - You are considering a 10-year investment project....Ch. 11 - Prob. 61PCh. 11 - An automobile manufacturer is considering whether...Ch. 11 - Prob. 63PCh. 11 - Prob. 65PCh. 11 - Rework the previous problem for a case in which...Ch. 11 - Prob. 68PCh. 11 - The Tinkan Company produces one-pound cans for the...Ch. 11 - Prob. 70PCh. 11 - In this version of dice blackjack, you toss a...Ch. 11 - Prob. 76PCh. 11 - It is January 1 of year 0, and Merck is trying to...Ch. 11 - Suppose you are an HR (human resources) manager at...Ch. 11 - You are an avid basketball fan, and you would like...Ch. 11 - Suppose you are a financial analyst and your...Ch. 11 - Software development is an inherently risky and...Ch. 11 - Health care is continually in the news. Can (or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- A new edition of a very popular textbook will be published a year from now. The publisher currently has 1000 copies on hand and is deciding whether to do another printing before the new edition comes out. The publisher estimates that demand for the book during the next year is governed by the probability distribution in the file P10_31.xlsx. A production run incurs a fixed cost of 15,000 plus a variable cost of 20 per book printed. Books are sold for 190 per book. Any demand that cannot be met incurs a penalty cost of 30 per book, due to loss of goodwill. Up to 1000 of any leftover books can be sold to Barnes and Noble for 45 per book. The publisher is interested in maximizing expected profit. The following print-run sizes are under consideration: 0 (no production run) to 16,000 in increments of 2000. What decision would you recommend? Use simulation with 1000 replications. For your optimal decision, the publisher can be 90% certain that the actual profit associated with remaining sales of the current edition will be between what two values?arrow_forwardDilberts Department Store is trying to determine how many Hanson T-shirts to order. Currently the shirts are sold for 21, but at later dates the shirts will be offered at a 10% discount, then a 20% discount, then a 40% discount, then a 50% discount, and finally a 60% discount. Demand at the full price of 21 is believed to be normally distributed with mean 1800 and standard deviation 360. Demand at various discounts is assumed to be a multiple of full-price demand. These multiples, for discounts of 10%, 20%, 40%, 50%, and 60% are, respectively, 0.4, 0.7, 1.1, 2, and 50. For example, if full-price demand is 2500, then at a 10% discount customers would be willing to buy 1000 T-shirts. The unit cost of purchasing T-shirts depends on the number of T-shirts ordered, as shown in the file P10_36.xlsx. Use simulation to determine how many T-shirts the company should order. Model the problem so that the company first orders some quantity of T-shirts, then discounts deeper and deeper, as necessary, to sell all of the shirts.arrow_forwardYou now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forward
- Based on Babich (1992). Suppose that each week each of 300 families buys a gallon of orange juice from company A, B, or C. Let pA denote the probability that a gallon produced by company A is of unsatisfactory quality, and define pB and pC similarly for companies B and C. If the last gallon of juice purchased by a family is satisfactory, the next week they will purchase a gallon of juice from the same company. If the last gallon of juice purchased by a family is not satisfactory, the family will purchase a gallon from a competitor. Consider a week in which A families have purchased juice A, B families have purchased juice B, and C families have purchased juice C. Assume that families that switch brands during a period are allocated to the remaining brands in a manner that is proportional to the current market shares of the other brands. For example, if a customer switches from brand A, there is probability B/(B + C) that he will switch to brand B and probability C/(B + C) that he will switch to brand C. Suppose that the market is currently divided equally: 10,000 families for each of the three brands. a. After a year, what will the market share for each firm be? Assume pA = 0.10, pB = 0.15, and pC = 0.20. (Hint: You will need to use the RISKBINOMLAL function to see how many people switch from A and then use the RISKBENOMIAL function again to see how many switch from A to B and from A to C. However, if your model requires more RISKBINOMIAL functions than the number allowed in the academic version of @RISK, remember that you can instead use the BENOM.INV (or the old CRITBENOM) function to generate binomially distributed random numbers. This takes the form =BINOM.INV (ntrials, psuccess, RAND()).) b. Suppose a 1% increase in market share is worth 10,000 per week to company A. Company A believes that for a cost of 1 million per year it can cut the percentage of unsatisfactory juice cartons in half. Is this worthwhile? (Use the same values of pA, pB, and pC as in part a.)arrow_forwardAssume a very good NBA team has a 70% chance of winning in each game it plays. During an 82-game season what is the average length of the teams longest winning streak? What is the probability that the team has a winning streak of at least 16 games? Use simulation to answer these questions, where each iteration of the simulation generates the outcomes of all 82 games.arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forward
- W. L. Brown, a direct marketer of womens clothing, must determine how many telephone operators to schedule during each part of the day. W. L. Brown estimates that the number of phone calls received each hour of a typical eight-hour shift can be described by the probability distribution in the file P10_33.xlsx. Each operator can handle 15 calls per hour and costs the company 20 per hour. Each phone call that is not handled is assumed to cost the company 6 in lost profit. Considering the options of employing 6, 8, 10, 12, 14, or 16 operators, use simulation to determine the number of operators that minimizes the expected hourly cost (labor costs plus lost profits).arrow_forwardA common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.arrow_forwardA martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forward
- Based on Marcus (1990). The Balboa mutual fund has beaten the Standard and Poors 500 during 11 of the last 13 years. People use this as an argument that you can beat the market. Here is another way to look at it that shows that Balboas beating the market 11 out of 13 times is not unusual. Consider 50 mutual funds, each of which has a 50% chance of beating the market during a given year. Use simulation to estimate the probability that over a 13-year period the best of the 50 mutual funds will beat the market for at least 11 out of 13 years. This probability turns out to exceed 40%, which means that the best mutual fund beating the market 11 out of 13 years is not an unusual occurrence after all.arrow_forwardThe annual demand for Prizdol, a prescription drug manufactured and marketed by the NuFeel Company, is normally distributed with mean 50,000 and standard deviation 12,000. Assume that demand during each of the next 10 years is an independent random number from this distribution. NuFeel needs to determine how large a Prizdol plant to build to maximize its expected profit over the next 10 years. If the company builds a plant that can produce x units of Prizdol per year, it will cost 16 for each of these x units. NuFeel will produce only the amount demanded each year, and each unit of Prizdol produced will sell for 3.70. Each unit of Prizdol produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. a. Among the capacity levels of 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, and 60,000 units per year, which level maximizes expected profit? Use simulation to answer this question. b. Using the capacity from your answer to part a, NuFeel can be 95% certain that actual profit for the 10-year period will be between what two values?arrow_forwardA company manufacturers a product in the United States and sells it in England. The unit cost of manufacturing is 50. The current exchange rate (dollars per pound) is 1.221. The demand function, which indicates how many units the company can sell in England as a function of price (in pounds) is of the power type, with constant 27556759 and exponent 2.4. a. Develop a model for the companys profit (in dollars) as a function of the price it charges (in pounds). Then use a data table to find the profit-maximizing price to the nearest pound. b. If the exchange rate varies from its current value, does the profit-maximizing price increase or decrease? Does the maximum profit increase or decrease?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License