
Given the circuit in Fig. 11.80, find Io and the overall complex power supplied.

Calculate the current
Answer to Problem 61P
The current
Explanation of Solution
Given data:
Refer to Figure 11.80 in the textbook.
The current
For load A,
The apparent power
The power factor
For load B,
The real power
The real power
For load C,
The real power
The power factor
Formula used:
Write the expression to find the complex power.
Here,
Write the expression to find the power factor
Here,
Write the expression to find the real power.
Write the expression to find the reactive power.
Write the expression to find the output voltage.
Calculation:
The given Figure 11.80 is redrawn as shown in Figure 1.
For load A:
Substitute
Substitute
Substitute
Substitute
As the power factor is leading, the load is capacitive. Therefore, the equation becomes,
For load B:
Substitute
As the load is capacitive, the power factor is leading. Therefore, the equation becomes,
For load C:
Substitute
Substitute
Rearrange the equation as follows,
Substitute
Substitute
In Figure 1, the load B and load C are connected in series. Therefore,
Substitute
The modified Figure is shown in Figure 2.
Substitute
Substitute
Apply Kirchhoff’s current law in Figure 2 to find the current
Substitute
Convert the equation from rectangular to polar form.
The overall complex power supplied by the source is,
Substitute
Conclusion:
Thus, the current
Want to see more full solutions like this?
Chapter 11 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- 4z Find the residue of f(z) = (z-3)(z+1)²arrow_forwardwhat is the integral of f(z): -3z+4 = around the circle z(z-1)(z-2) |z|=3/2?arrow_forward1. The communication channel bandwidth uses is 25 MHz centered at 1GHz and uses BPSK. The noise power spectral density of the channel is 10^-9 W/Hz. The channel loss between the transmitter and receiver is 25dB. The application requires a BER of less than 10^-4. Determine the minimum transmit power required.arrow_forward
- 4. A differential BPSK transmitter consumes 10 W and provides a BER of 1*10^-7. If the system moves to 16-QAM, what is new minimum transmit power?arrow_forward5. The noise power (in watts) measured in a 40MHz Wifi channel is 230*10^-6 Watts. The access point (AP) output power is 600 mW and only uses 256QAM and has a data rate of 400Mbps. The channel losses can be modeled as 0.4dB/meter. An application on your phone requires a BER of < than 1*10^-4. A) What is the maximum distance between the AP and your phone? b) if the AP and my phone could switch to 64QAM and support the same data rate, what is the new maximum distance between the AP and my phone?arrow_forward3. You are to design a 9-volt battery operated communication system that has a center frequency of 2.4 GHz. It must last 10 years without replacing batteries. The application requires a BER of <10^-5 and a data rate of 500bps. The channel can be modeled as AWGN with a noise power spectral density of 10^- 8 W/Hz. (a) What modulation scheme would you use? B) what is the required capacity of the batteries? and (c) Is the battery commercially available?arrow_forward
- Refer to the logic diagram of Figure. Gate 1 and gate 4 belong to the standard TTL family, while gate 2 and gate 3 belong to the Schottky TTL family and the low-power Schottky TTL family respectively. Determine whether the fan-out capability of gate 1 is being exceeded. Relevant data for the three logic families are given in Table 3(a).arrow_forward2. An existing system uses noncoherent BASK. The application requires a BER of <10^-5. The current transmit power is 25 Watts. If the system changes to a coherent BPSK modulation scheme, what is the new transmit power required to deliver the same BER?arrow_forwardfunctions: where are the Cauchy-Riemann equations satisfied by the 1- w = z² - 4 2- w = 7 Z Z+5 3- w = Z-2 z+1arrow_forward
- Find the integral for ezz Cz-i ezz Zdz and $c (z-i)³ dzarrow_forwardDetermine the voltage across A and B in the circuit given below:arrow_forwardAn inductive coil having negligible resistance and 0.1H inductance is connected a supply of 220V, 50 Hz. Calculate (a) Inductive reactance, (b) RMS value of Current, (c) Power consumed, (d) Power factor, (e) Write down the equations for voltage and current.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





