A massless spring with constant k is mounted on a turntable of rotational inertia I , as shown in Fig. 11.19. The turntable is on a frictionless vertical axle, though initially it’s not rotating. The spring is compressed a distance Δ x from its equilibrium, with a mass m placed against it. When the spring is released, the mass moves at right angles to a line through the turntable’s center, at a distance b from the center, and slides without friction across the table and off the edge. Find expressions for (a) the linear speed of the mass and (b) the rotational speed of the turntable. ( Hint: What’s conserved?) FIGURE 11.19 Problem 58
A massless spring with constant k is mounted on a turntable of rotational inertia I , as shown in Fig. 11.19. The turntable is on a frictionless vertical axle, though initially it’s not rotating. The spring is compressed a distance Δ x from its equilibrium, with a mass m placed against it. When the spring is released, the mass moves at right angles to a line through the turntable’s center, at a distance b from the center, and slides without friction across the table and off the edge. Find expressions for (a) the linear speed of the mass and (b) the rotational speed of the turntable. ( Hint: What’s conserved?) FIGURE 11.19 Problem 58
A massless spring with constant k is mounted on a turntable of rotational inertia I, as shown in Fig. 11.19. The turntable is on a frictionless vertical axle, though initially it’s not rotating. The spring is compressed a distance Δx from its equilibrium, with a mass m placed against it. When the spring is released, the mass moves at right angles to a line through the turntable’s center, at a distance b from the center, and slides without friction across the table and off the edge. Find expressions for (a) the linear speed of the mass and (b) the rotational speed of the turntable. (Hint: What’s conserved?)
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Chapter 11 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.