A uniform, solid, spherical asteroid with mass 1.2 × 10 13 kg and radius 1.0 km is rotating with period 4.3 h. A meteoroid moving in the asteroid’s equatorial plane crashes into the equator at 8.4 km/s. It hits at a 58° angle to the vertical and embeds itself at the surface. After the impact the asteroid’s rotation period is 3.9 h. Find the meteoroid’s mass.
A uniform, solid, spherical asteroid with mass 1.2 × 10 13 kg and radius 1.0 km is rotating with period 4.3 h. A meteoroid moving in the asteroid’s equatorial plane crashes into the equator at 8.4 km/s. It hits at a 58° angle to the vertical and embeds itself at the surface. After the impact the asteroid’s rotation period is 3.9 h. Find the meteoroid’s mass.
A uniform, solid, spherical asteroid with mass 1.2 × 1013 kg and radius 1.0 km is rotating with period 4.3 h. A meteoroid moving in the asteroid’s equatorial plane crashes into the equator at 8.4 km/s. It hits at a 58° angle to the vertical and embeds itself at the surface. After the impact the asteroid’s rotation period is 3.9 h. Find the meteoroid’s mass.
There are many well-documented cases of people surviving falls from heights greater than 20.0 m. In one such case, a 55.0 kg woman survived a fall from a 10th floor balcony, 29.0 m above the ground, onto the garden below, where the soil had been turned in preparation for planting.
Because of the "give" in the soil, which the woman compressed a distance of 15.0 cm upon impact, she survived the fall and was only briefly hospitalized.
(a) Ignoring air resistance, what was her impact speed with the ground (in m/s)?
m/s
(b) What was the magnitude of her deceleration during the impact in terms of g?
g
(c) Assuming a constant acceleration, what was the time interval (in s) during which the soil brought her to a stop?
S
(d) What was the magnitude of the impulse (in N⚫ s) felt by the woman during impact?
N⚫s
(e) What was the magnitude of the average force (in N) felt by the woman during impact?
N
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Chapter 11 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.