Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. This time he’s standing at the outer edge of a 15-Mg turntable of radius 8.5 m, rotating with angular velocity 0.15 s −1 on frictionless bearings. Jumbo then walks to the center of the turntable. Treating Jumbo as a point mass and the turntable as a solid disk, find (a) the angular velocity of the turntable once Jumbo reaches the center and (b) the work Jumbo does in walking to the center.
Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. This time he’s standing at the outer edge of a 15-Mg turntable of radius 8.5 m, rotating with angular velocity 0.15 s −1 on frictionless bearings. Jumbo then walks to the center of the turntable. Treating Jumbo as a point mass and the turntable as a solid disk, find (a) the angular velocity of the turntable once Jumbo reaches the center and (b) the work Jumbo does in walking to the center.
Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. This time he’s standing at the outer edge of a 15-Mg turntable of radius 8.5 m, rotating with angular velocity 0.15 s−1 on frictionless bearings. Jumbo then walks to the center of the turntable. Treating Jumbo as a point mass and the turntable as a solid disk, find (a) the angular velocity of the turntable once Jumbo reaches the center and (b) the work Jumbo does in walking to the center.
Definition Definition Rate of change of angular displacement. Angular velocity indicates how fast an object is rotating. It is a vector quantity and has both magnitude and direction. The magnitude of angular velocity is represented by the length of the vector and the direction of angular velocity is represented by the right-hand thumb rule. It is generally represented by ω.
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Make sure to draw a Free Body Diagram as well
Chapter 11 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.