Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 48AP
(a)
To determine
The speed of skateboarder at the bottom of the half-pipe.
(b)
To determine
The
(c)
To determine
The angular momentum for skateboarder is constant in this maneuver.
(d)
To determine
The skateboarder speeds immediately after he stands up.
(e)
To determine
The chemical energy in the skateboarder’s legs was converted into mechanical energy in the skateboarder–Earth system when he stood up.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 7 meter long stick is suspended from two strings. The stick has a mass of 17kg that is uniformily distributed. A 9kg dog is sitting 0.7m from the left end of the stick. The center of mass is 2.53m from the left edge of the stick. What is the tension of each string?
Problem: Statics.
A worker places an aluminum ladder on a horizontal concrete slab against a vertical wooden wall at
30 degrees from the vertical. The ladder has length L=5m and m=30 kg. The ladder's CM is at a third
of the length up. Worker Bob has mass M-90 kg and intends to climb up the ladder. Simultaneously,
worker Charlie has mass M-90 kg and operates a rope through a single pulley to hoist a pail of mass
m=30 kg. The axle of the pulley is anchored to the ladder at A=0.3 m along the ladder from the top
point. Charlie is pulling the rope down with enough force to hoist the pail at uniform velocity. The mass
of the pulley and rope are negligible. The friction in the pulley axle is negligible. The ladder is equipped
with rubber booties and a rubber top. The kinetic friction coefficients are: rubber on dry concrete 0.9,
rubber on dry wood 0.9, aluminum on wet concrete 0.2, aluminum on wet wood 0.2.
30
30
a)
Calculate the safety limit in terms of maximal height off the ground that
Bob…
A yo-yo is constructed of three disks: two outer disks of mass MM, radius RR, and thickness dd, and an inner disk (around which the string is wrapped) of mass mm, radius rr, and thickness dd. The yo-yo is suspended from the ceiling and then released with the string vertical (see figure below).
Calculate the tension in the string as the yo-yo falls. Note that when the center of the yo-yo moves down a distance y, the yo-yo turns through an angle y/r, which in turn means that the angular speed ω is equal to Vcm/r.
Use the following as necessary: M, R, d, m, r, and g for the acceleration due to gravity.)
Chapter 11 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 11.1 - Which of the following statements about the...Ch. 11.2 - Recall the skater described at the beginning of...Ch. 11.3 - A solid sphere and a hollow sphere have the same...Ch. 11.4 - A competitive diver leaves the diving board and...Ch. 11 - Prob. 1OQCh. 11 - Prob. 2OQCh. 11 - Prob. 3OQCh. 11 - Prob. 4OQCh. 11 - Prob. 5OQCh. 11 - Prob. 6OQ
Ch. 11 - Prob. 7OQCh. 11 - Prob. 8OQCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - In some motorcycle races, the riders drive over...Ch. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQCh. 11 - Prob. 11CQCh. 11 - Prob. 1PCh. 11 - The displacement vectors 42.0 cm at 15.0 and 23.0...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - A particle is located at a point described by the...Ch. 11 - Two forces F1 and F2 act along the two sides of an...Ch. 11 - A student claims that he has found a vector A such...Ch. 11 - Prob. 11PCh. 11 - A 1.50-kg particle moves in the xy plane with a...Ch. 11 - Prob. 13PCh. 11 - Heading straight toward the summit of Pikes Peak,...Ch. 11 - Review. A projectile of mass m is launched with an...Ch. 11 - Prob. 16PCh. 11 - A particle of mass m moves in a circle of radius R...Ch. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - A 5.00-kg particle starts from the origin at time...Ch. 11 - A ball having mass m is fastened at the end of a...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Show that the kinetic energy of an object rotating...Ch. 11 - A uniform solid disk of mass m = 3.00 kg and...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A 60.0-kg woman stands at the western rim of a...Ch. 11 - Prob. 34PCh. 11 - A uniform cylindrical turntable of radius 1.90 m...Ch. 11 - Prob. 36PCh. 11 - A wooden block of mass M resting on a...Ch. 11 - Prob. 38PCh. 11 - A wad of sticky clay with mass m and velocity vi...Ch. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - The angular momentum vector of a precessing...Ch. 11 - A light rope passes over a light, frictionless...Ch. 11 - Prob. 45APCh. 11 - Prob. 46APCh. 11 - We have all complained that there arent enough...Ch. 11 - Prob. 48APCh. 11 - A rigid, massless rod has three particles with...Ch. 11 - Prob. 50APCh. 11 - Prob. 51APCh. 11 - Two children are playing on stools at a restaurant...Ch. 11 - Prob. 53APCh. 11 - Prob. 54APCh. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Native people throughout North and South America...Ch. 11 - Prob. 58APCh. 11 - Global warming is a cause for concern because even...Ch. 11 - The puck in Figure P11.46 has a mass of 0.120 kg....Ch. 11 - Prob. 61CPCh. 11 - Prob. 62CPCh. 11 - Prob. 63CPCh. 11 - A solid cube of wood of side 2a and mass M is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A skateboarder with his board can be modeled as a particle of mass 76.0 kg, located at his center of mass (which we will study in Chapter 9). As shown in Figure P8.49, the skateboarder starts from rest in a crouch-ing position at one lip of a half-pipe (point ). The half-pipe is one half of a cylinder of radius 6.80 m with its axis horizontal. On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 630 m. (a) Find his speed at the bottom of the half-pipe (point (b) Immediately after passing point he stands up and raises his arms, lifting his center of mass from 0.500 in to 0.950 m above the concrete (point ). Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.85 m. His body is horizontal when he passes point , the far lip of the half-pipe. As he passes through point , the speed of the skateboarder is 5.14 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy in the skateboarderEarth system when he stood up at point ? (c) How high above point does he rise? Caution: Do not try this stunt yourself without the required skill and protective equipment. Figure P8.49arrow_forwardA giant swing at an amusement park consists of a 365-kg uniform arm 10.0 m long, with two seats of negligible mass connected at the lower end of the arm (Fig. P8.53). (a) How far from the upper end is the center of mass of the arm? (b) The gravitational potential energy of the arm is the same as if all its mass were concentrated at the center of mass. If the arm is raised through a 45.0 angle, find the gravitational potential energy, where the zero level is taken to be 10.0 m below the axis, (c) The arm drops from rest from the position described in part (b). Find the gravitational potential energy of the system when it reaches the vertical orientation. (d) Find the speed of the seats at the bottom of the swing.arrow_forwardA solid sphere of radius 10 cm is allowed to rotate freely about an axis. The sphere is given a sharp blow so that its center of mass starts from the position shown in the following figure with speed 15 cm/s. What is the maximum angle that the diameter makes with the vertical?arrow_forward
- You are advising a fellow student who wants to learn to perform multiple flips on the trampoline. You have him bounce vertically as high as he can, keeping his body perfectly straight and vertical. You determine that he can raise his center of mass by a distance of h = 6.00 m above its level when he initiates the jump. He can do a single flip by bouncing gently, throwing his arms forward over his head, and tucking his body. You use your smartphone to make a video of him doing a single flip. Based on analysis of this video, you determine that his moment of inertia is Istraight = 26.7 kg . m2 when his body is straight and Ituck = 5.62 kg . m2 in the tuck position. You suggest that he keep his body in the straight position for Δt, = 0.400 s after leaving the trampoline surface and then immediately go into a tuckposition. As he lands, he should straighten his body out Δt, = 0.400 s before he lands. From analysis of the video recording, you determine that throwing his arms forward causes…arrow_forwardThe top edge of a rod of mass 2.80 kg is pivoted to a point on the ceiling. The rod is free to rotate about this pivot and the length of the rod is 40.0 cm. The rod is pulled to the right until it makes 27.0 degree with the vertical and then released from rest. At the same time a clay ball of mass 350 grams is moving to the right with a speed 160 cm/s. As soon as the rod reaches the vertical position (moving to the left), the clay ball hits the rod at the bottom and sticks to it. o search a. b. Determine the final angular velocity of the clay+rod system. 116 min 42 secs Find out the magnitude angular displacement of the clay+rod system after the impact BIUGG Next TE 24°C Partly cloudyarrow_forwardThe cylindrical plug A of mass mA = 2.7 kg is released from rest at B and slides down the smooth circular guide. The plug strikes the block C of mass mc = 2.1 kg and becomes embedded in it. Calculate the distances which the block and plug slide before coming to rest. The coefficient of kinetic friction between the block and the horizontal surface is uk = 0.38 and the distance r = 2.08 m. Hk Answer: s= i mc A MA B marrow_forward
- Lana Kane, Archer’s spy companion, is a 70 kg pole-vaulter. She falls from a peak height of 5.90 m after pole-vaulting over a crossbar set at that height. She lands on a thick mat. When Lana first makes contact with the mat, her center of gravity is only 1.0 m high. During her impact with the mat, the mat compresses. At the point of maximum compression, Lana’s vertical velocity reaches zero, and her center of gravity if only 0.5 m high. What average force did the mat exert on Lana during this impact?arrow_forwardA solid, uniform bowling ball, 12.7 cm in diameter, starts from rest and rolls down a 7.00 m high ramp with a 37.0° slope. There is enough friction between the surface of the ramp and the bowling ball to prevent the ball from skidding. At the bottom of the ramp, the ball goes up a frictionless ramp with the same slope as the first ramp. Determine max height of ball on frictionless ramp.arrow_forwardKathrine lets go of a cube of mass of m = 5 kilograms on her physics demo device she created. Her cube goes down a super smooth slide surface that has a height vertical distance of h=85 cm. At the end of the slide, her cube crashes into and sticks to the lower end of a vertical pole that has a mass M=10.5 kg and length 1-2.00m. Right after the crash, the pole pivots about a hinge point near its upper end through an angle (theta) before it stops for a moment. See the image given below to visualize Katherines system. You are tasked with Figuring out the following three things The speed of her cube just before it hits the pole The angular speed of the pole just after the crash The angle (theta) through which the pole pivots a. b. C. 0 Kathrine and her devicearrow_forward
- A small 15.0-g bug stands at one end of a thin uniform bar that is initially at rest on a smooth horizontal table. The other end of the bar pivots about a nail driven into the table and can rotate freely, without friction. The bar has mass 70.0 g and is 100 cm in length. The bug jumps off in the horizontal direction, perpendicular to the bar, with a speed of 20.0 cm/s relative to the table. (a) What is the angular velocity of the bar after the insect jumps? b) What is the total kinetic energy of the system just after the bug jumps?arrow_forwardYou have a cylinder. You don't know what its internal structure looks like, but you plan to roll it down a ramp, as in this week's procedure. The ramp is 1 m long, and is elevated at an angle of 15°. The mass of the cylinder is 450 g and its diameter is 2.1 cm.After you release the cylinder, it rolls down the ramp without slipping, gaining speed. How much total energy (in J)does the block have at the bottom of the ramp?arrow_forwardA solid sphere of radius 10 cm is allowed to rotate freely about an axis. The sphere is given a sharp blow so that its center of mass starts from the position shown in the following figure with speed 15 cm/s. What is the maximum angle that the diameter makes with the vertical?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY