Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 9CQ
(a)
To determine
The change in moment of inertia of the Earth.
(b)
To determine
The duration of day will increase or decrease.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 11.1 - Which of the following statements about the...Ch. 11.2 - Recall the skater described at the beginning of...Ch. 11.3 - A solid sphere and a hollow sphere have the same...Ch. 11.4 - A competitive diver leaves the diving board and...Ch. 11 - Prob. 1OQCh. 11 - Prob. 2OQCh. 11 - Prob. 3OQCh. 11 - Prob. 4OQCh. 11 - Prob. 5OQCh. 11 - Prob. 6OQ
Ch. 11 - Prob. 7OQCh. 11 - Prob. 8OQCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - In some motorcycle races, the riders drive over...Ch. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQCh. 11 - Prob. 11CQCh. 11 - Prob. 1PCh. 11 - The displacement vectors 42.0 cm at 15.0 and 23.0...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - A particle is located at a point described by the...Ch. 11 - Two forces F1 and F2 act along the two sides of an...Ch. 11 - A student claims that he has found a vector A such...Ch. 11 - Prob. 11PCh. 11 - A 1.50-kg particle moves in the xy plane with a...Ch. 11 - Prob. 13PCh. 11 - Heading straight toward the summit of Pikes Peak,...Ch. 11 - Review. A projectile of mass m is launched with an...Ch. 11 - Prob. 16PCh. 11 - A particle of mass m moves in a circle of radius R...Ch. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - A 5.00-kg particle starts from the origin at time...Ch. 11 - A ball having mass m is fastened at the end of a...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Show that the kinetic energy of an object rotating...Ch. 11 - A uniform solid disk of mass m = 3.00 kg and...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A 60.0-kg woman stands at the western rim of a...Ch. 11 - Prob. 34PCh. 11 - A uniform cylindrical turntable of radius 1.90 m...Ch. 11 - Prob. 36PCh. 11 - A wooden block of mass M resting on a...Ch. 11 - Prob. 38PCh. 11 - A wad of sticky clay with mass m and velocity vi...Ch. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - The angular momentum vector of a precessing...Ch. 11 - A light rope passes over a light, frictionless...Ch. 11 - Prob. 45APCh. 11 - Prob. 46APCh. 11 - We have all complained that there arent enough...Ch. 11 - Prob. 48APCh. 11 - A rigid, massless rod has three particles with...Ch. 11 - Prob. 50APCh. 11 - Prob. 51APCh. 11 - Two children are playing on stools at a restaurant...Ch. 11 - Prob. 53APCh. 11 - Prob. 54APCh. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Native people throughout North and South America...Ch. 11 - Prob. 58APCh. 11 - Global warming is a cause for concern because even...Ch. 11 - The puck in Figure P11.46 has a mass of 0.120 kg....Ch. 11 - Prob. 61CPCh. 11 - Prob. 62CPCh. 11 - Prob. 63CPCh. 11 - A solid cube of wood of side 2a and mass M is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardMath Review (a) Convert 47.0 to radians, using the appropriate conversion ratio. (b) Convert 2.35 rad to degrees. (c) If a circle has radius 1.70 m, what is the are length subtended by a 47.0 angle? (See Sections 1.5 and 7.1.)arrow_forward
- A space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forwardSection 11.5 The Motion of Gyroscopes and Tops A spacecraft is in empty space. It carries on board gyroscope with a moment of inertia of Ig = 20.0 kgm2 about the axis of the gyroscope. The moment of inertia of the spacecraft around the same axis is Is = 5.00 X 105 kgm2. Neither the spacecraft nor the gyroscope is originally rotating. The gyroscope can be powered up in a negligible period of time to an angular speed of 100 rad/s. If the orientation of the spacecraft is to be changed by 30.0, for what time interval should the gyroscope be operated?arrow_forward
- Why is the following situation impossible? A space station shaped like a giant wheel has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g (Fig. P10.52). A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a test to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening.arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardWhat is the value of the angular acceleration of the second hand of the clock on the wall?arrow_forward
- A 12.0-kg solid sphere of radius 1.50 m is being rotated by applying a constant tangential force of 10.0 N at a perpendicular distance of 1.50 m from the rotation axis through the center of the sphere. If the sphere is initially at rest, how many revolutions must the sphere go through while this force is applied before it reaches an angular speed of 30.0 rad/s?arrow_forwardIf global warming continues, its likely that some ice from the polar ice caps of the Earth will melt and the water will be distributed closer to the equator. If this occurs, would the length of the day (one rotation) (a) increase, (b) decrease, or (c) remain the same?arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel (Fig. P11.28, page 306) has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g. A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a lest to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening. Figure P11.28arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License