(a)
To check: The statement is true or false.
(a)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
The above statement is understood to be the limit of
Therefore the statement is true.
(b)
To check: The statement is true or false.
(b)
Answer to Problem 44E
The statement is false.
Explanation of Solution
Given information:
Calculation:
The given statement might be interpreted as meaning that there is no
Follow the function's graph from the left and get close to
Follow the function's graph from the right and get close to
The left-hand and right-hand limits both exist and are equal at 1, therefore the limit does exist and the assertion is false.
(c)
To check: The statement is true or false.
(c)
Answer to Problem 44E
The statement is false.
Explanation of Solution
Given information:
Calculation:
As x gets closer to 2, the limit of
Follow the function's graph from the left and get close to
Follow the function's graph from the right and get close to
The claim is false because the left-hand and right-hand limits are 1 and not 2, respectively.
(d)
To check: The statement is true or false.
(d)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
According to the given assertion, the limit of
Therefore the required given statement is true.
(e)
To check: The statement is true or false.
(e)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
If trace the graph as move toward
Therefore the required given statement is true.
(f)
To check: The statement is true or false.
(f)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
If the left and right have different boundaries, then there won't be a limit. In fact, discovered:
The limit as defined by
Therefore the required given statement is true.
(g)
To check: The statement is true or false.
(g)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
If the limit on both sides is the same as x gets closer to zero. The graph reaches the point
Now if follow the graph's path from the right, see that it tends to head in the same direction.
The statement is true because the boundaries are equal.
(h)
To check: The statement is true or false.
(h)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
There is a limit for every c in the open interval
(i)
To check: The statement is true or false.
(i)
Answer to Problem 44E
The statement is true.
Explanation of Solution
Given information:
Calculation:
This is accurate since the interval notation
Therefore the required given statement is true.
Chapter 1 Solutions
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
- The correct answer is Ccould you show me how to do it by finding a0 and and akas well as setting up the piecewise function and integratingarrow_forwardT 1 7. Fill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. So π/2 2 2πxcosx dx Find the volume of the solid obtained when the region under the curve on the interval is rotated about the axis.arrow_forward38,189 5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x| ≤ and the curve y y = about the line x = =플 2 80 F3 a FEB 9 2 7 0 MacBook Air 3 2 stv DGarrow_forward
- Find f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x. h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1 - - - f(x) = ☐arrow_forwardx-4 Let f(x)=5x-1, h(x) = Find (fo h)(0). 3 (fo h)(0) = (Type an integer or a fraction.)arrow_forwardFill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. π/2 So/² 2xcosx dx Find the volume of the solid obtained when the region under the curve 38,189 on the interval is rotated about the axis.arrow_forward
- Let f(x) = -5x-1, g(x) = x² + 5, h(x) = · x+4 3 Find (hog of)(1). (hogof)(1)= (Simplify your answer. Type an integer or a decimal.)arrow_forwardFor the given function, find (a) the equation of the secant line through the points where x has the given values and (b) the equation of the tangent line when x has the first value. y= f(x) = x²+x; x=-1,x=2 a. Which of the following formulas can be used to find the slope of the secant line? ○ A. 2-(-1) f(2) f(-1) 2+(-1) C. 1(2)+(-1) The equation of the secant line is 1(2)+(-1) О в. 2+(-1) f(2)-(-1) D. 2-(-1)arrow_forwardplease do not use chat gptarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning