(II) Two lightweight rods 24 cm in length are mounted perpendicular to an axle and at 180° to each other (Fig. 11–34). At the end of each rod is a 480-g mass. The rods are spaced 42 cm apart along the axle. The axle rotates at 4.5 rad/s. ( a ) What is the component of the total angular momentum along the axle? ( b ) What angle does the vector angular momentum make with the axle? [ Hint: Remember that the vector angular momentum must be calculated about the same point for both masses, which could be the CM .] FIGURE 11-34 Problem 40
(II) Two lightweight rods 24 cm in length are mounted perpendicular to an axle and at 180° to each other (Fig. 11–34). At the end of each rod is a 480-g mass. The rods are spaced 42 cm apart along the axle. The axle rotates at 4.5 rad/s. ( a ) What is the component of the total angular momentum along the axle? ( b ) What angle does the vector angular momentum make with the axle? [ Hint: Remember that the vector angular momentum must be calculated about the same point for both masses, which could be the CM .] FIGURE 11-34 Problem 40
(II) Two lightweight rods 24 cm in length are mounted perpendicular to an axle and at 180° to each other (Fig. 11–34). At the end of each rod is a 480-g mass. The rods are spaced 42 cm apart along the axle. The axle rotates at 4.5 rad/s. (a) What is the component of the total angular momentum along the axle? (b) What angle does the vector angular momentum make with the axle? [Hint: Remember that the vector angular momentum must be calculated about the same point for both masses, which could be the CM.]
FIGURE 11-34
Problem 40
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
Certain types of particle detectors can be used to reconstruct the tracks left by unstable, fast-moving sub-atomic particles. Assume
that a track with a length of L=2.97 mm in the laboratory frame of reference has been observed. Further assume that you
determined from other detector data that the particle moved at a speed of L=0.910 ⚫ c, also in the laboratory frame of reference. c
denotes the speed of light in vacuum. What proper lifetime would you determine for this particle from the data given?
T= 4.0
S
generated worksheet
While cruising down University Boulevard you are stopped by a cop who states that you ran a red traffic light. Because you don't
want to pay the stiff fine, you are attempting a physics defense. You claim that due to the relativistic Doppler effect, the red color of
the light λ=616 nm appeared green '=531 nm to you. The cop makes a quick calculation of his own and rejects your defense.
How fast, in terms of your speed u divided by the speed of light in vacuum c, would you have to drive to justify your claim? Note
that the speed u is taken to be a positive quantity.
U 4.0
C
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.