Computer Science: An Overview (13th Edition) (What's New in Computer Science)
13th Edition
ISBN: 9780134875460
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 36CRP
Program Plan Intro
Best fit
To eliminate irrelevant moves, the tiles that are out of place should always be adjacent to the hole. The tiles that are already in place should not be moved. The best fit algorithm eliminates the moves having a higher cost but only for proceeding moves. This algorithm does not consider the overall cost associated with a path.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Implement RBFS algorithm and draw the search tree for the following search
space. (Assume start state S and goal state G)
150
42
B
H
6
2
66
105
A
G
10
7
10
E
30
36
100
1
63
1.
2.
Algorithm design with sorting. Each of n users spends some time on a social media site. For each i = 1, . . . , n, user i enters the site at time ai and leaves at time bi ≥ ai. You are interested in the question: how many distinct pairs of users are ever on the site at the same time? (Here, the pair (i, j) is the same as the pair (j, i)).Example: Suppose there are 5 users with the following entering and leaving times:
Then, the number of distinct pairs of users who are on the site at the same time is five: these pairs are (1, 2), (1, 3), (2, 3), (4, 6), (5, 6). (Drawing the intervals on a number line may make this easier to see).(a) Given input (a1 , b1),(a2 , b2), . . . ,(an, bn) as above in no particular order (i.e., not sorted in any way), describe a straightforward algorithm that takes Θ(n2)-time to compute the number of pairs of users who are ever on the site at the same time, and explain why it takes Θ(n2)-time. [We are expecting pseudocode and a brief justification for its…
Write this code exactly but in a different and easier way
Chapter 11 Solutions
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Ch. 11.1 - Prob. 1QECh. 11.1 - Prob. 2QECh. 11.1 - Prob. 3QECh. 11.1 - Prob. 4QECh. 11.1 - Prob. 5QECh. 11.2 - Prob. 1QECh. 11.2 - Prob. 2QECh. 11.2 - Prob. 3QECh. 11.2 - Prob. 4QECh. 11.2 - Identify the ambiguities involved in translating...
Ch. 11.2 - Prob. 6QECh. 11.2 - Prob. 7QECh. 11.3 - Prob. 1QECh. 11.3 - Prob. 2QECh. 11.3 - Prob. 3QECh. 11.3 - Prob. 4QECh. 11.3 - Prob. 5QECh. 11.3 - Prob. 6QECh. 11.3 - Prob. 7QECh. 11.3 - Prob. 8QECh. 11.3 - Prob. 9QECh. 11.4 - Prob. 1QECh. 11.4 - Prob. 2QECh. 11.4 - Prob. 3QECh. 11.4 - Prob. 4QECh. 11.4 - Prob. 5QECh. 11.5 - Prob. 1QECh. 11.5 - Prob. 2QECh. 11.5 - Prob. 3QECh. 11.6 - Prob. 1QECh. 11.6 - Prob. 2QECh. 11.6 - Prob. 3QECh. 11.7 - Prob. 1QECh. 11.7 - Prob. 2QECh. 11.7 - Prob. 3QECh. 11 - Prob. 1CRPCh. 11 - Prob. 2CRPCh. 11 - Identify each of the following responses as being...Ch. 11 - Prob. 4CRPCh. 11 - Prob. 5CRPCh. 11 - Prob. 6CRPCh. 11 - Which of the following activities do you expect to...Ch. 11 - Prob. 8CRPCh. 11 - Prob. 9CRPCh. 11 - Prob. 10CRPCh. 11 - Prob. 11CRPCh. 11 - Prob. 12CRPCh. 11 - Prob. 13CRPCh. 11 - Prob. 14CRPCh. 11 - Prob. 15CRPCh. 11 - Prob. 16CRPCh. 11 - Prob. 17CRPCh. 11 - Prob. 18CRPCh. 11 - Give an example in which the closed-world...Ch. 11 - Prob. 20CRPCh. 11 - Prob. 21CRPCh. 11 - Prob. 22CRPCh. 11 - Prob. 23CRPCh. 11 - Prob. 24CRPCh. 11 - Prob. 25CRPCh. 11 - Prob. 26CRPCh. 11 - Prob. 27CRPCh. 11 - Prob. 28CRPCh. 11 - Prob. 29CRPCh. 11 - Prob. 30CRPCh. 11 - Prob. 31CRPCh. 11 - Prob. 32CRPCh. 11 - Prob. 33CRPCh. 11 - What heuristic do you use when searching for a...Ch. 11 - Prob. 35CRPCh. 11 - Prob. 36CRPCh. 11 - Prob. 37CRPCh. 11 - Prob. 38CRPCh. 11 - Suppose your job is to supervise the loading of...Ch. 11 - Prob. 40CRPCh. 11 - Prob. 41CRPCh. 11 - Prob. 42CRPCh. 11 - Prob. 43CRPCh. 11 - Prob. 44CRPCh. 11 - Prob. 45CRPCh. 11 - Draw a diagram similar to Figure 11.5 representing...Ch. 11 - Prob. 47CRPCh. 11 - Prob. 48CRPCh. 11 - Prob. 49CRPCh. 11 - Prob. 50CRPCh. 11 - Prob. 51CRPCh. 11 - Prob. 52CRPCh. 11 - Prob. 53CRPCh. 11 - Prob. 54CRPCh. 11 - Prob. 1SICh. 11 - Prob. 2SICh. 11 - Prob. 3SICh. 11 - Prob. 4SICh. 11 - Prob. 5SICh. 11 - Prob. 6SICh. 11 - Prob. 7SICh. 11 - Prob. 8SICh. 11 - Prob. 9SICh. 11 - Prob. 10SICh. 11 - Prob. 11SICh. 11 - Prob. 12SICh. 11 - A GPS in an automobile provides a friendly voice...Ch. 11 - Prob. 14SI
Knowledge Booster
Similar questions
- Using A* Search, show the process of identifying the correct path from the start node (A) to end node (M). Heuristic Values State Value A 0 B 3 C 6 D 5 E 1 F 3 G 2 H 4 I 3 J 2 K 1 L 2 M 1arrow_forwardThe below adjacency matrix M represents a directed graph. 0 1 1 M=|1 0 1 1 0 Select one: O True O Falsearrow_forwardIn graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. in its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the same color; this is called a vertex coloring.", Wikipedia a) Apply your algorithm in the graph below. What is the accuracy ratio? b) Show that the performance ratio of your algorithm can go unbounded above or never at all.arrow_forward
- 1. Give a recursive algorithm in pseudocode to compute the diameter of a binary tree. Recall that diameter is defined as the number of nodes on the longest path between any two nodes in the tree. Nodes have left and right references, but nothing else. You must use the height function, defined as follows, in your solution. Your solution will return the diameter of the tree as an integer. function height (Node n) 1. if n = null 2. return -1 3. return 1 + max (height (n.left), height (n.right)) Write your solution below. function diameter (Node n)arrow_forwardb3arrow_forwarda) Given a depth-first search tree T, the set of edges in T are referred to as "tree edges" while those not in T are referred to as "back edges". Modify the implementation of the Depth-First Search algorithm to print out the set of tree edges and the set of back edges for the following graph. 1(0 1 1 0 0 1 0) 210 100 0 0 31 10 10 1 4 0 0 1 0 0 0 0 50 0 0 00 1 1 1 0 1 70 0 1 0 1 1 0 6 1 0 0 0arrow_forward
- A. B. 3 In the search tree below, the two-line codes indicate the target, and the numbers on the edge indicate the cost of the search. Using each of the following blind methods, write the order of the nodes to be searched to reach the first target: a) Breath-first Search (BFS) b) Depth-first Search (DFS) c) Iterative Depth-first Searcharrow_forward4 Write the shortest path length from A to every other node of the above in the Graph and the path component. (e.g. Path A to G: length: 3, consist of: A->C->G) 3 2 2 D F 3 A H. G 4.arrow_forwardQ1/ Consider the search graph below where S is the start node and G1, G2, G3 are goal, using A* search algorithm to indicate which of the goal state reach first G10 10 A7 E1 7 3 6 3 G20 $9 D6 6 B 10 3 2 C 10 F7 11 T G3 0arrow_forward
- No hand written and fast answer with explanationarrow_forward*, This is a search problem where A is the start state. The costs of transitions are placed on the edges, but the heuristic estimated value, h, is in the state's node. Assume ties are always broken by choosing the state which comes first alphabetically. State h(state) A 4 4 3 F 1. E [Note!!! When you write the order of the node use gre Capital Letter and a comma to separate between them. Do not use space. For example: A,B,C,D] 1. If the root is state A, Which state represents the goal state? 2. Determine the lower and upper bound for the heuristic value of B, h(B), to make the h admissible?arrow_forwardThe Python implementation updates the cost of reaching from the start vertex to each of the explored vertexes. In addition, when it decides on a route, A* considers the shortest path from the start to the target, passing by the current vertex, because it sums the estimate from the heuristic with the cost of the path computed to the current vertex. This process allows the algorithm to perform more computations than BFS when the heuristic is a proper estimate and to determine the best path possible.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education