Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 15P
A rectangular channel carries a discharge of 10 ft3/s per foot of width. Determine the minimum specific energy possible for this flow. Compute the corresponding flow depth and speed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute for the critical depth in a channel with constant spesific energy of 5cm in a channel with 2.5 width and flow of 2m/sec
1Water flows through a rectangular sharp-crested weir with a channel width of 2 m. The channel depth is 1 m with a weir head of 0.1 m.
Calculate the discharge.
Make a sketch of the channel along with the weir pieces
Compute for the specific energy of a rectangular channel having a flow of 1.8 cubic meter/sec. The channel. Is 3 meters wide and 0.8 meters deep. Elevation of the channel bed is 15.28m
Chapter 11 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 11 - Verify the equation given in Table 11.1 for the...Ch. 11 - A pebble is dropped into a stream of water that...Ch. 11 - Solution of the complete differential equations...Ch. 11 - A water flow rate of 250 cfs flows at a depth of 5...Ch. 11 - Determine and plot the relation between water...Ch. 11 - Capillary waves (ripples) are small amplitude and...Ch. 11 - The Froude number characterizes flow with a free...Ch. 11 - Consider waves on the surface of a tank of water...Ch. 11 - A submerged body traveling horizontally beneath a...Ch. 11 - Water flows in a rectangular channel at a depth of...
Ch. 11 - A partially open sluice gate in a 5-m-wide...Ch. 11 - Find the critical depth for flow at 3 m3/s in a...Ch. 11 - Flow occurs in a rectangular channel of 6 m width...Ch. 11 - What is the maximum flow rate that may occur in a...Ch. 11 - A rectangular channel carries a discharge of 10...Ch. 11 - Flow in the channel of Problem 11.15 has a...Ch. 11 - Consider the Venturi flume shown. The bed is...Ch. 11 - Eleven cubic meters per second of water are...Ch. 11 - A rectangular channel 10 ft wide carries 100 cfs...Ch. 11 - At what depths can 800 cfs flow in a trapezoidal...Ch. 11 - At a section of a 10-ft-wide rectangular channel,...Ch. 11 - Water, at 3 ft/s and 2 ft depth, approaches a...Ch. 11 - A horizontal rectangular channel 3 ft wide...Ch. 11 - A hydraulic jump occurs in a rectangular channel...Ch. 11 - A hydraulic jump occurs in a wide horizontal...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - The depths of water upstream and downstream from a...Ch. 11 - Calculate y2, h, and y3 for this two-dimensional...Ch. 11 - The hydraulic jump may be used as a crude flow...Ch. 11 - A hydraulic jump occurs on a horizontal apron...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - A positive surge wave, or moving hydraulic jump,...Ch. 11 - A 2-m-wide rectangular channel with a bed slope of...Ch. 11 - Determine the uniform flow depth in a rectangular...Ch. 11 - Determine the uniform flow depth in a trapezoidal...Ch. 11 - Water flows uniformly at a depth of 1.2 m in a...Ch. 11 - This large uniform open channel flow is to be...Ch. 11 - A rectangular flume built of timber is 3 ft wide....Ch. 11 - A channel with square cross section is to carry 20...Ch. 11 - A triangular channel with side angles of 45 is to...Ch. 11 - A flume of timber has as its cross section an...Ch. 11 - At what depth will 4.25 m3/s flow uniformly in a...Ch. 11 - A semicircular trough of corrugated steel, with...Ch. 11 - A rectangular flume built of concrete with 1 ft...Ch. 11 - Water flows in a trapezoidal channel at a flow...Ch. 11 - What slope is necessary to carry 11 m3/s uniformly...Ch. 11 - Find the normal depth for the channel of Problem...Ch. 11 - For a trapezoidal shaped channel with n = 0.014...Ch. 11 - Compute the critical depth for the channel in...Ch. 11 - A trapezoidal canal lined with brick has side...Ch. 11 - An optimum rectangular storm sewer channel made of...Ch. 11 - For a sharp-crested suppressed weir of length B =...Ch. 11 - A rectangular sharp-crested weir with end...Ch. 11 - What is the depth of water behind a rectangular...Ch. 11 - A broad-crested weir 0.9 m high has a flat crest...Ch. 11 - The head on a 90 V-notch weir is 1.5 ft. Determine...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
In a glass factory a 6 ft-wide sheet of glass at 2700 R comes out of the final rollers, which fix the thickness...
Fundamentals Of Thermodynamics
Calculate the mass of a can of oil if it weighs 610N.
Applied Fluid Mechanics (7th Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Rate of change of combined thermal and flow work.
Introduction to Heat Transfer
14.52 For the beam shown, calculate the maximum tensile and compressive bending stresses and the maximum shear ...
Applied Statics and Strength of Materials (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the discharge if flow velocity 0.8 m/s and area of channel 0.3 m2arrow_forwardWater flows at 15 f/s through a 6 ft wide rectangular channel as shown in the figure. The upstream depth of flow (y1) is 1 ft and the downstream depth of flow (y2) is 1.5 ft. Is the flow upstream subcritical or supercritical? Determine if a hydraulic jump will form. Show steps.arrow_forwardA rectangular channel is 3.0 m wide and carries a discharge of 3.3 m³/s at a depth of 0.9 m. A smooth contraction of the channel width is proposed at a section. Find the smallest contracted width that will not affect the upstream flow conditions. Neglect the energy losses in the transition.arrow_forward
- The radial gate used to control the flow at 2.5m wide rectangular channel. For a specific opening the discharge from this gate was 3.65-³/5. Find G for modular flow. use 8=20 and y₁=1.76m.arrow_forwardA sharp crested suppressed weir under a head of 2.03 m is 3.50 m high and 2m long. Determine the discharge over the weir, if C = 0.603. Neglect the velocity of approach.arrow_forwardNonearrow_forward
- A hydraulic jump is shown in figure below. The depth of flow z₂ after the hydraulic jump is 5 m larger than z₁. The total flow rate in the channel is 450 m³/s and the channel width is 50 m. The length / over which the jump occurs is 0.4 m. ax= If the depth, z₁, is 6 m then what is the average acceleration (ing's) of the liquid as is flows across the jump. 0.21 Hydraulic jump g's V₂arrow_forwardA 6m rectangular channel channel carries a discharge of 30 m³/s at a depth of 2.5m. Determine the channel width that produces critical depth.arrow_forwardEXERCISE 3: Water flows at a rate of q=3.13 m/s.m in a rectangular channel shown in the figure on the right. Ja0.00023 no0.015 • Determine the uniform flow depths and the types of flow in Ja 0.00762 Pe-0.015 different parts of the channel. Draw the water surface profile in the transition zone,arrow_forward
- Q5/The normal depth of flow in a rectangular channel (2 m deep and 5 m wide) is 1 m. It is laid to a slope of 1 m/km with a Manning's n = 0.02. Some distance downstream there is a hump of height 0.5 m on the stream bed. Determine the depth of flow (y1) immediately upstream of the hump. Answer: y1 = 1.27 marrow_forwardThe discharge through a rectangular channel of 20 m wide is 50 m/s. The depth of flow is 1 m. The bed slope is 1/4000. Take Chezy's constant C=60 The slope of the energy line is Next pagearrow_forwardIf a rectangular sharp-crested weir 1.25m long with no end contractions were to replace the triangular weir, what would be the required H in centimeters for a similar discharge? Use Francis formula.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License