Concept explainers
Rod AB is made of a steel for which the yield strength is σY = 450 MPa and E = 200 GPa; rod BC is made of an aluminum alloy for which σY = 280 MPa and E = 73 GPa. Determine the maximum strain energy that can be acquired by the composite rod ABC without causing any permanent deformations.
Fig. P11.123
Find the maximum strain energy that can be acquired by the composite rod ABC.
Answer to Problem 123RP
The maximum strain energy of the composite rod ABC is
Explanation of Solution
Given information:
The diameter of the composite rod AB is
The diameter of the composite rod BC is
The length of the rod AB is
The length of the rod BC is
The yield strength of the steel rod AB is
The modulus of elasticity of the steel rod is
The yield strength of the aluminum alloy BC is
The modulus of elasticity of the aluminum alloy is
Calculation:
Calculate the area of the rod (A) as shown below.
For the steel rod AB.
Substitute
For the aluminum alloy BC.
Substitute
Calculate the applied load
For the steel rod AB.
Substitute
For the aluminum alloy BC.
Substitute
Take the smaller value as the applied load,
Calculate the strain energy (U) as shown below.
Substitute
Therefore, the maximum strain energy of the composite rod ABC is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK MECHANICS OF MATERIALS
- A steel rod is subjected to a gradually applied load (F) which gave a rise to a maximum stress of 200 MPa. The rod is 250 mm long and one part of it's length is square and the remainder is circular with a diameter of 25 mm. If the total strain energy in the rod and modulus elasticity of the material is 1,3 J and 200 GPa, determine the following : 4.1.The applied load F and the total extension of the bar 4.2.The length of the square portion of the bar and the suddenly applied load that will induce the same amount of energy. 4.3.The load that falls from a height of 8 mm induces 1,3 J in the bararrow_forwardA steel rod is subjected to a gradually applied load (F) which gave a rise to a maximum stress of 200 MPa. The rod is 250 mm long and one part of its length is square and the remainder is circular with a diameter of 25 mm. If the total strain energy in the rod and modulus elasticity of the material is 1.3 J and 200 GPa, determine the following: LI The applied load F 2 The total extension of the bar 3 The length of the square portion of the bar 4 The suddenly applied load that will induce the same amount of energy 5 The load that falls from a height of 8 mm induces 1,3 J in the bar.arrow_forwardIn a standard tensile test, a steel rod of 25 mm diameter and 200 mm long exhibits a strain of 1.0186x 10³ upon application of an axial load of 220 kN. Knowing that v = 0.4 and E = 200 GPa, determine the change in diameter of the rod. Answer in millimeters.arrow_forward
- Consider a cylindrical specimen of a steel alloy 10.0 mm (0.39 in.) in diameter and 75 mm (3.0 in.) long that is pulled in tension. Determine its elongation when a load of 20,000 N (4,500 lbf) is applied. Note: strain, e = 0.0012arrow_forwardTwo tempered-steel bars, each 316316 in. thick, are bonded to a 1212 -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with E = 29 × 106 psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. Determine the residual stresses in the tempered-steel bars if the load P is gradually increased from zero to 103 kips and then decreased back to zero. The residual stress in the tempered steel bars isarrow_forwardA solid 20-mm-diameter shaft is subjected to an axial load P. The shaft is made of aluminum [E = 70 GPa; v=0.33]. A strain gage is mounted on the shaft at the orientation shown in Fig. P13.77. (a) If P= 18.5 kN, determine the strain reading that would be expected from the gage. (b) If the gage indicates a strain value of ε = 950 ue, determine the axial force P applied to the shaft.arrow_forward
- A steel cable is used to support an elevator cage at the bottom of a 1700-ft-deep mineshaft. A uniform normal strain of 220 μin./in. is produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is proportional to the length of the cable below the point. Assume D = 1700 ft and d= 700 ft. If the total normal strain in the cable at the cable drum (upper end of the cable) is 520 uin./in., determine (a) the strain in the cable at a depth of 700 ft. (b) the total elongation of the cable. Drum Cable Answers: (a) ε = (b) 8 = y i i Elevator cage D X μin./in. in.arrow_forwardA composite rod of overall length of 200 mm comprised of a steel rod and brass rod attached rigidly to the end. The diameter and the length of the steel rod is 10 mm and 120 mm, respectively, the diameter and the length of the brass rod as 20 mm and 80 mm respectively. The rod is used as a tie in a link mechanism and the strain in the brass rod is limited to 0.0053. Given that the total extension of the composite rod must not exceed 0,1624 mm and E for steel is 200 GPa, respectively. Calculate : A) Strain in the steel rod B) Load carried by the steel and the brass rods C) Modulus of elasticity for the brass. Can you please resend that question as it appears to be blank??arrow_forward9.38 The assembly shown consists of an aluminum shell (E. = 70 GPa, a, = 23.6 X 10°C) fully bonded to a steel core (E, = 200 GPa, a, = 11.7 × 10-ºC) and is unstressed at a temperature of 20°C. Considering only axial deformations, determine the stress in the aluminum shell when the temperature reaches 180°C. 200 mm 20 mm Aluminum shell Steel 50 mm core Fig. P9.38arrow_forward
- A steel rod is subjected to a gradually applied load (F) which gave a rise to a maximum stress of 200 MPa. The rod is 250 mm long and one part of its length is square and the remainder is circular with a diameter of 25 mm. If the total strain energy in the rod and modulus elasticity of the material is 1.3 J and 200 GPa, determine the following:1.The applied load F2.The total extension of the bar3.The length of the square portion of the bar4.The suddenly applied load that will induce the same amount of energy 5.The load that falls from a height of 8 mm induces 1,3 J in the bar.arrow_forwardA steel rod is subjected to a gradually applied load (F) which gave a rise to a maximum stress of 200 MPa. The rod is 250 mm long and one part of its length is square and the remainder is circular with a diameter of 25 mm. If the total strain energy in the rod and modulus elasticity of the material is 1.3 J and 200 GPa, determine the following: 4.1 The applied load F 4.2 The total extension of the bararrow_forwardA rigid steel bar is supported by three rods as shown. There is no strain in the rods before the load P is applied. After load P is applied, the normal strain in rods (1) is 2350 μm/m. Assume initial rod lengths of L₁ = 1,250 mm and L₂ = 2,000 mm. Determine the normal strain in rod (2). (1) A L₁ (2) Rigid bar 1721 μm/m 1858 μm/m O 1347 μm/m O 1469 μm/m 943 μm/m B L₂ (1)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY