Solution Manual for Quantitative Chemical Analysis
Solution Manual for Quantitative Chemical Analysis
9th Edition
ISBN: 9781464175633
Author: Daniel Harris
Publisher: Palgrave Macmillan Higher Ed
bartleby

Videos

Question
Book Icon
Chapter 11, Problem 11.KE

(a)

Interpretation Introduction

Interpretation:

An expression for the absorbance of a solution containing an indicator has to be calculated.

Concept introduction:

Beer-Lambert’s law states that the intensity of light absorbed by a substance dissolved in a completely transmitting solvent is directly proportional to the concentration of the substance and the path length taken by the light while travelling in the solution.

It is mathematically expressed as,

A = log(I0I)=εlc

Where,

A = AbsorbanceI0 = intensity of incident radiationI =  intensity of trasmitted radiationε =  molar extinction co-efficientl =  pathlength of the lightc =  concentration of the solution

(b)

Interpretation Introduction

Interpretation:

pKa for this indicator has to be calculated.

Concept introduction:

Beer-Lambert’s law states that the intensity of light absorbed by a substance dissolved in a completely transmitting solvent is directly proportional to the concentration of the substance and the path length taken by the light while travelling in the solution.

It is mathematically expressed as,

A = log(I0I)=εlc

Where,

A = AbsorbanceI0 = intensity of incident radiationI =  intensity of trasmitted radiationε =  molar extinction co-efficientl =  pathlength of the lightc =  concentration of the solution

Blurred answer
Students have asked these similar questions
Carbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar. You can draw out your curve within the text box or upload a drawing below.
How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.
Don't used hand raiting and don't used Ai solution

Chapter 11 Solutions

Solution Manual for Quantitative Chemical Analysis

Ch. 11 - Prob. 11.HECh. 11 - Prob. 11.IECh. 11 - Prob. 11.JECh. 11 - Prob. 11.KECh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14PCh. 11 - Prob. 11.15PCh. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - Prob. 11.18PCh. 11 - Prob. 11.19PCh. 11 - Prob. 11.20PCh. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - Prob. 11.23PCh. 11 - Prob. 11.24PCh. 11 - Prob. 11.25PCh. 11 - Prob. 11.26PCh. 11 - Prob. 11.27PCh. 11 - Prob. 11.28PCh. 11 - Prob. 11.29PCh. 11 - Prob. 11.30PCh. 11 - Prob. 11.31PCh. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - Prob. 11.34PCh. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Prob. 11.37PCh. 11 - Prob. 11.38PCh. 11 - Prob. 11.39PCh. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - Prob. 11.43PCh. 11 - Prob. 11.44PCh. 11 - Prob. 11.45PCh. 11 - Prob. 11.46PCh. 11 - Prob. 11.47PCh. 11 - Prob. 11.48PCh. 11 - Prob. 11.49PCh. 11 - Prob. 11.50PCh. 11 - Prob. 11.51PCh. 11 - Prob. 11.52PCh. 11 - Prob. 11.53PCh. 11 - Prob. 11.54PCh. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - Prob. 11.57PCh. 11 - Prob. 11.58PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - Prob. 11.63PCh. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - Prob. 11.66PCh. 11 - Prob. 11.67PCh. 11 - Prob. 11.68PCh. 11 - Prob. 11.69PCh. 11 - Prob. 11.70PCh. 11 - Prob. 11.71PCh. 11 - Prob. 11.72PCh. 11 - Prob. 11.73PCh. 11 - Prob. 11.74PCh. 11 - Prob. 11.75P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Thermogravimetric Analysis [ TGA ] # Thermal Analysis # Analytical Chemistry Part-11# CSIR NET/GATE; Author: Priyanka Jain;https://www.youtube.com/watch?v=p1K-Jpzylso;License: Standard YouTube License, CC-BY