A uniform metal bar that is 8.00 m long and has mass 30.0 kg is attached at one end to the side of a building by a frictionless hinge. The bar is held at an angle of 64.0° above the horizontal by a thin, light cable that runs from the end of the bar opposite the hinge to a point on the wall that is above the hinge. The cable makes an angle of 37.0° with the bar. Your mass is 65.0 kg. You grab the bar near the hinge and hang beneath it, with your hands close together and your feet off the ground. To impress your friends, you intend to shift your hands slowly toward the top end of the bar. (a) If the cable breaks when its tension exceeds 455 N, how far from the upper end of the bar are you when the cable breaks? (b) Just before the cable breaks, what are the magnitude and direction of the resultant force that the hinge exerts on the bar?
A uniform metal bar that is 8.00 m long and has mass 30.0 kg is attached at one end to the side of a building by a frictionless hinge. The bar is held at an angle of 64.0° above the horizontal by a thin, light cable that runs from the end of the bar opposite the hinge to a point on the wall that is above the hinge. The cable makes an angle of 37.0° with the bar. Your mass is 65.0 kg. You grab the bar near the hinge and hang beneath it, with your hands close together and your feet off the ground. To impress your friends, you intend to shift your hands slowly toward the top end of the bar. (a) If the cable breaks when its tension exceeds 455 N, how far from the upper end of the bar are you when the cable breaks? (b) Just before the cable breaks, what are the magnitude and direction of the resultant force that the hinge exerts on the bar?
A uniform metal bar that is 8.00 m long and has mass 30.0 kg is attached at one end to the side of a building by a frictionless hinge. The bar is held at an angle of 64.0° above the horizontal by a thin, light cable that runs from the end of the bar opposite the hinge to a point on the wall that is above the hinge. The cable makes an angle of 37.0° with the bar. Your mass is 65.0 kg. You grab the bar near the hinge and hang beneath it, with your hands close together and your feet off the ground. To impress your friends, you intend to shift your hands slowly toward the top end of the bar. (a) If the cable breaks when its tension exceeds 455 N, how far from the upper end of the bar are you when the cable breaks? (b) Just before the cable breaks, what are the magnitude and direction of the resultant force that the hinge exerts on the bar?
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
Chapter 11 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.