BIO CALC Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm, (a) Let T max represent the maximum value of the tendon tension. Use the results of Example 11.4 to express w max (the maximum weight that can be held) in terms of T max , L , D , and h . Your expression should not include the angle θ . (b) The tendons of different primates are attached to the forearm at different values of D . Calculate the derivative of w max with respect to D , and determine whether the derivative is positive or negative, (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)
BIO CALC Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm, (a) Let T max represent the maximum value of the tendon tension. Use the results of Example 11.4 to express w max (the maximum weight that can be held) in terms of T max , L , D , and h . Your expression should not include the angle θ . (b) The tendons of different primates are attached to the forearm at different values of D . Calculate the derivative of w max with respect to D , and determine whether the derivative is positive or negative, (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)
BIO CALC Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm, (a) Let Tmax represent the maximum value of the tendon tension. Use the results of Example 11.4 to express wmax (the maximum weight that can be held) in terms of Tmax, L, D, and h. Your expression should not include the angle θ. (b) The tendons of different primates are attached to the forearm at different values of D. Calculate the derivative of wmax with respect to D, and determine whether the derivative is positive or negative, (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)
A box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 11 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.