Consider a galvanic cell based on the following half-reactions:
a. What is the expected cell potential with all componentsin their standard states?
b. What is the oxidizing agent in the overall cellreaction?
c. What substances make up the anode compartment?
d. In the standard cell, in which direction do the electronsflow?
e. How many electrons are transferred per unit of cellreaction?
f. If this cell is set up at 25°C with
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
EBK CHEMICAL PRINCIPLES
- Consider a galvanic cell based on the following half-reactions: a. What is the standard potential for this cell? b. A nonstandard cell is set up at 25C with [Mg2+] = 1.00 105 M. The cell potential is observed to be 4.01 V. Calculate [Au3+] in this cell.arrow_forwardA standard galvanic cell is constructed so that the overall cell reaction is 2A13++(aq)+3M(s)3M2+(aq)+2A1(s) Where M is an unknown metal. If G = 411 kJ for the overall cell reaction, identify the metal used to construct the standard cell.arrow_forwardGive the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forward
- Use the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mg(s)+Ni2+(aq)Mg2+(aq)+Ni(s) (b) 2Ag+(aq)+Cu(s)Cu2+(aq)+2Ag(s) (c) Mn(s)+Sn(NO3)2(aq)Mn(NO3)2(aq)+Sn(s) (d) 3Fe(NO3)2(aq)+Au(NO3)3(aq)3Fe(NO3)3(aq)+Au(s)arrow_forwardA mercury battery, used for hearing aids and electric watches, delivers a constant voltage (1.35 V) for long periods. The half-reactions are HgO(s)+H2O(l)+2eHg(l)+2OH(aq)Zn(s)+2OH(aq)Zn(OH)2(s)+2e Which half-reaction occurs at the anode and which occurs at the cathode? What is the overall cell reaction?arrow_forward
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forwardIs it reasonable to conclude that a potential could be assigned to each half-cell in a voltaic cell, based on these data for three voltaic cells? Explain. Zn(s)|Zn2+(aq)||Cu2+(aq)|Cu(s) cell potential=1.10 V Zn(s)|Zn2+(aq)||Ag+(aq)|Ag(s) cell potential=1.56 V Cu(s)|Cu2+(aq)||Ag+(aq)|Ag(s) cell potential=0.46 Varrow_forward
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardA galvanic cell is based on the following half-reactions at 25C: Ag++eAg H2O2+2H++2e2H2O Predict whether is larger or smaller than for the following cases. a. [Ag+]=1.0M,[H2O2]=2.0M,[H+]=2.0M b. [Ag+]=2.0M,[H2O2]=1.0M,[H+]=1.0107Marrow_forwardElectrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax