a)
Interpretation:Whether below statement is true or not should be determined.
At standard conditions, copper metal can be oxidized by
Concept introduction:Study of interchange between electrical and chemical energy falls under branch of chemistry called
Reactions that occur in galvanic cells can be broken down into two half-cell reactions. One half-cell reaction is that of reduction whereas another half-cell reaction is that of oxidation.
b)
Interpretation: Whether below statement is true or not should be determined.
The oxidizing agent is at the anode in the galvanic cell.
Concept introduction:Electrochemical cells that convert chemical energy to electrical energy are called galvanic cells. These are also known as voltaic cells. In these cells, spontaneous redox reactions take place.
c)
Interpretation: Whether below statement is true or not should be determined.
If the half reactions in the cell are as follows:
The anode will be aluminum.
Concept introduction: Electrochemical cells that convert chemical energy to electrical energy are called galvanic cells. These are also known as voltaic cells. In these cells, spontaneous redox reactions take place.
d)
Interpretation: Whether below statement is true or not should be determined.
The movement of the electrons takes place from lower to higher ion concentration in the concentration cell.
Concept introduction:Electrochemical cells that convert chemical energy to electrical energy are called galvanic cells. These are also known as voltaic cells. In these cells, spontaneous redox reactions take place. Concentration cells are special cases of galvanic cells that consist of two half-cells with same electrodes but different concentrations.
e)
Interpretation: Whether below statement is true or not should be determined.
In the salt bridge of the galvanic cell, negative ions flow in the same direction of the electrons.
Concept introduction:Study of interchange between electrical and chemical energy falls under branch of chemistry called electrochemistry. It includes occurrence of oxidation and reduction reactions. This includes production of electric current from chemical reaction and vice-versa.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
EBK CHEMICAL PRINCIPLES
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forward
- Consider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forwardThe commercial production of magnesium is accomplished by electrolysis of molten MgCl2. (a) Why is electrolysis of an aqueous solution of MgCl2 not used in this process? (b) Write the anode and cathode half-reaction in the electrolysis of molten MgCl2.arrow_forwardFrom the information provided, use cell notation to describe the following systems: (a) In one half-cell, a solution of Pt(NO3)2 forms Pt metal, while in the other half-Cell, Cu metal goes into a.Cu(NO3)2 solution with all solute concentrations 1 M. (b) The cathode consists of a gold electrode in a 0.55 M Au(NO3)3 solution and the anode is a magnesium electrode in 0.75 M Mg(NO3)2 solution. (c) One half-cell consists of a silver electrode in a 1 M AgNO3 solution, and in the other half-cell, a copper Electrode in 1 M Cu(NO3)2 is oxidized.arrow_forward
- Calculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forwardCalculate the standard cell potential of the cell corresponding to the oxidation of oxalic acid, H2C2O4, by permanganate ion. MnO4. 5H2C2O4(aq)+2MnO4(aq)+6H+(aq)10CO2(g)+2Mn2+(aq)+8H2O(l) See Appendix C for free energies of formation: Gf for H2C2O4(aq) is 698 kJ.arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- Consider the following galvanic cell: A 15 0-mole sample of NH is added to the Ag compartment (assume 1.00 L of total solution after the addition). The silver ion reacts with ammonia to form complex ions as shown: Ag+(aq)+NH3(aq)AgNH3+(aq)K1=2.1103AgNH3+(aq)+NH3(aq)Ag(NH3)2+(aq)K2=8.2103 Calculate the cell potential after the addition of 15.0 moles of NH3.arrow_forwardChlorine, Cl2, is produced commercially by the electrolysis of aqueous sodium chloride. The anode reaction is 2Cl(aq)Cl2(g)+2e How long will it take to produce 2.00 kg of chlorine if the current is 5.00 102 A?arrow_forwardA standard galvanic cell is constructed so that the overall cell reaction is 2A13++(aq)+3M(s)3M2+(aq)+2A1(s) Where M is an unknown metal. If G = 411 kJ for the overall cell reaction, identify the metal used to construct the standard cell.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning