Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 11, Problem 11.4.6P

i.

To determine

The allowable load for the pinned-pinned end condition.

i.

Expert Solution
Check Mark

Answer to Problem 11.4.6P

The allowable load for the pinned-pinned condition is 677.94 kN

Explanation of Solution

Given:

E=200 GPa

L= 7.5 m

Factor of of safety = 2.5

Column type: W250×89

Concept Used:

  Factorofsafety=PcrPallowableThecriticalloadofthecolumn,Pcr=π2EILeffective2Where,I=momentofinertiaE=modulusofelasticity

Calculation:

  Momentofinteriaofthecolumn:I1=142×106mm4I2=48.3×106mm4SinceI2istheminimumvalueweconsiderI2.Factorofsafety=PcrPallowablePallowable=PcrFactorofsafetyPallowable=π2EIn×Leffective2ForpinnedpinnedendcoditionLeffective=LPallowable=π2×200×103×48.3×1062.5×(7500)2Pallowable=677.97kN

Conclusion:

The allowable load for the pinned-pinned condition is 677.97 kN

ii.

To determine

The allowable load for the fixed-free end condition.

ii.

Expert Solution
Check Mark

Answer to Problem 11.4.6P

The allowable load for the fixed-free end condition is 169.49 kN

Explanation of Solution

Given:

E=200 GPa

L= 7.5 m

Factor of of safety = 2.5

Column type: W250×89

Concept Used:

  Factorofsafety=PcrPallowableThecriticalloadofthecolumn,Pcr=π2EILeffective2Where,I=momentofinertiaE=modulusofelasticity

Calculation:

  Momentofinteriaofthecolumn:I1=142×106mm4I2=48.3×106mm4SinceI2istheminimumvalueweconsiderI2.Factorofsafety=PcrPallowablePallowable=PcrFactorofsafetyThecriticalloadofthecolumn,Pcr=π2EILeffective2ForfixedfreeendcoditionLeffective=2LPallowable=π2×200×103×48.3×1062.5×(2×7500)2Pallowable=169.49kN

Conclusion:

The allowable load for the fixed-free end condition is 169.49 kN

iii.

To determine

The allowable load for the fixed-pinned end condition.

iii.

Expert Solution
Check Mark

Answer to Problem 11.4.6P

The allowable load for the fixed-pinned end condition is 1387.58 kN

Explanation of Solution

Given:

E=200 GPa

L= 7.5 m

Factor of of safety = 2.5

Column type: W250×89

Concept Used:

  Factorofsafety=PcrPallowableThecriticalloadofthecolumn,Pcr=π2EILeffective2Where,I=momentofinertiaE=modulusofelasticity

Calculation:

  Momentofinteriaofthecolumn:I1=142×106mm4I2=48.3×106mm4SinceI2istheminimumvalueweconsiderI2.Factorofsafety=PcrPallowablePallowable=PcrFactorofsafetyThecriticalloadofthecolumn,Pcr=π2EILeffective2ForfixedpinnedendcoditionLeffective=0.699LPallowable=π2×200×103×48.3×1062.5×(0.699×7500)2Pallowable=1387.58kN

Conclusion:

The allowable load for the fixed-pinned end condition is 1387.58 kN

iv.

To determine

The allowable load for the fixed-fixed end condition.

iv.

Expert Solution
Check Mark

Answer to Problem 11.4.6P

The allowable load for the fixed-fixed end condition is 2711.90 kN

Explanation of Solution

Given:

E=200 GPa

L= 7.5 m

Factor of of safety = 2.5

Column type: W250×89

Concept Used:

  Factorofsafety=PcrPallowableThecriticalloadofthecolumn,Pcr=π2EILeffective2Where,I=momentofinertiaE=modulusofelasticity

Calculation:

  Momentofinteriaofthecolumn:I1=142×106mm4I2=48.3×106mm4SinceI2istheminimumvalueweconsiderI2.Factorofsafety=PcrPallowablePallowable=PcrFactorofsafetyThecriticalloadofthecolumn,Pcr=π2EILeffective2ForpinnedpinnedendcoditionLeffective=L2Pallowable=π2×200×103×48.3×106×42.5×(7500)2Pallowable=2711.90kN

Conclusion:

The allowable load for the fixed-fixed end condition is 2711.90 kN

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What are some ways Historical Data can be used and applied to an estimate?
Problem 1. Rod OAB is rotating counterclockwise with the constant angular velocity of 5 rad/s. In the position shown, collar P is sliding toward A with the constant speed of 0.8 m/s relative to the rod. Find the velocity of P and the acceleration of P. y B 3 P 300 mm A - Answer: Up = -0.861 − 0.48ĵ™; ā₂ = 4.8î −1.1ĵ m
A bent tube is attached to a wall with brackets as shown. . A force of F = 980 lb is applied to the end of the tube with direction indicated by the dimensions in the figure. a.) Determine the force vector F in Cartesian components. → → b.) Resolve the force vector F into vector components parallel and perpendicular to the position vector rDA. Express each of these vectors in Cartesian components. 2013 Michael Swanbom cc 10 BY NC SA g x B A א Z FK с кая b Values for dimensions on the figure are given in the table below. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 8 in 12 in с 15 in 36 in h 23 in g 28 in a. F = b. FDA = = ( + k) lb k) lb FIDA = 2 + k) lb

Chapter 11 Solutions

Mechanics of Materials (MindTap Course List)

Ch. 11 - The figure shows an idealized structure consisting...Ch. 11 - Rigid column ABCD has an elastic support at B with...Ch. 11 - An idealized column is made up of rigid bars ABC...Ch. 11 - An idealized column is composed of rigid bars ABC...Ch. 11 - Repeat Problem 11.2-14 using L = 12 ft, ß = 0.25...Ch. 11 - An idealized column is composed of rigid bars ABC...Ch. 11 - Column AB has a pin support at A,a roller support...Ch. 11 - Slender column ABC is supported at A and C and is...Ch. 11 - Calculate the critical load PCTfor a W 8 × 35...Ch. 11 - Solve the preceding problem for a W 250 × 89 steel...Ch. 11 - Solve Problem 11.3-3 for a W 10 × 45 steel column...Ch. 11 - A horizontal beam AB is pin-supported at end A and...Ch. 11 - A column ABC is supported at ends A and C and...Ch. 11 - Find the controlling buckling load (kN) for the...Ch. 11 - A column, pinned at top and bottom, is made up of...Ch. 11 - Repeat Problem 11.3-9. Use two C 150 × 12.2 steel...Ch. 11 - A horizontal beam AB is pin-supported at end A and...Ch. 11 - -12 A horizontal beam AB is supported at end A and...Ch. 11 - A horizontal beam AB has a sliding support at end...Ch. 11 - A slender bar AB with pinned ends and length L is...Ch. 11 - A rectangular column with cross-sectional...Ch. 11 - .16 Three identical, solid circular rods, each of...Ch. 11 - Three pinned-end columns of the same material have...Ch. 11 - A long slender column ABC is pinned at ends A and...Ch. 11 - The roof over a concourse at an airport is...Ch. 11 - The hoisting arrangement for lifting a large pipe...Ch. 11 - A pinned-end strut of aluminum (E = 10,400 ksi)...Ch. 11 - The cross section of a column built up of two...Ch. 11 - The truss ABC shown in the figure supports a...Ch. 11 - A truss ABC supports a load W at joint B, as shown...Ch. 11 - An S6 × 12.5 steel cantilever beam AB is supported...Ch. 11 - The plane truss shown in the figure supports...Ch. 11 - A space truss is restrained at joints O, A,B, and...Ch. 11 - A fixed-end column with circular cross section is...Ch. 11 - A cantilever aluminum column has a square tube...Ch. 11 - An aluminum pipe column (E = 10,400 ksi) with a...Ch. 11 - Solve the preceding problem for a steel pipe...Ch. 11 - A wide-flange steel column (E = 30 × l06 psi) of...Ch. 11 - Prob. 11.4.6PCh. 11 - The upper end of a WE × 21 wide-flange steel...Ch. 11 - A vertical post AB is embedded in a concrete...Ch. 11 - The horizontal beam ABC shown in the figure is...Ch. 11 - The roof beams of a warehouse are supported by...Ch. 11 - Determine the critical load Pcrand the equation of...Ch. 11 - A fixed-pinned column is a W310 × 21 steel shape...Ch. 11 - Find the Controlling buckling load (kips) for the...Ch. 11 - Prob. 11.4.14PCh. 11 - A rigid L-shaped frame is supported by a steel...Ch. 11 - An aluminum tube AB with a circular cross section...Ch. 11 - The frame ABC consists of two members AB and BC...Ch. 11 - An aluminum bar having a rectangular cross section...Ch. 11 - ‘11.5-2 A steel bar having a square cross section...Ch. 11 - A simply supported slender column is subjected to...Ch. 11 - A brass bar of a length L = 0.4 m is loaded at end...Ch. 11 - Determine the bending moment M in the pinned-end...Ch. 11 - Plot the load-deflection diagram for a pinned-end...Ch. 11 - Solve the preceding problem for a column with e =...Ch. 11 - A wide-flange member (W200 × 22.5) is compressed...Ch. 11 - A wide-f hinge member (W 10 × 30) is compressed by...Ch. 11 - Solve the preceding problem (W 250 × 44.8) if the...Ch. 11 - The column shown in the figure is fixed at the...Ch. 11 - An aluminum box column with a square cross section...Ch. 11 - Solve the preceding problem for an aluminum column...Ch. 11 - A steel post /t if with a hollow circular cross...Ch. 11 - A frame ABCD is constructed of steel wide-flange...Ch. 11 - A steel bar has a square cross section of width b...Ch. 11 - ]11.6-2 A brass bar (E = 100 GPa) with a square...Ch. 11 - A square aluminum bar with pinned ends carries a...Ch. 11 - A pinned-and column of a length L = 2A m is...Ch. 11 - A pinned-end strut of a length L = 5.2 ft is...Ch. 11 - A circular aluminum tube with pinned ends supports...Ch. 11 - A steel W 12 × 35 column is pin-supported at the...Ch. 11 - A steel W 310 x 52 column is pin-supported at the...Ch. 11 - A steel column (E = 30 x 103 ksi) with pinned ends...Ch. 11 - A W410 × S5 steel column is compressed by a force...Ch. 11 - A steel column ( E = 30 X 103 ksi) that is fixed...Ch. 11 - AW310 × 74 wide-flange steel column with length L...Ch. 11 - A pinned-end column with a length L = 18 ft is...Ch. 11 - The wide-flange, pinned-end column shown in the...Ch. 11 - A W14 × 53 wide-flange column of a length L = 15...Ch. 11 - A wide-flange column with a bracket is fixed at...Ch. 11 - Determine the allowable axial load Pallowa W 10 X...Ch. 11 - Determine the allowable axial load Pallowfor a W...Ch. 11 - Determine the allowable axial load Pallowfor a W...Ch. 11 - Select a steel wide-flange column of a nominal...Ch. 11 - Prob. 11.9.5PCh. 11 - Select a steel wide-flange column of a nominal...Ch. 11 - Prob. 11.9.7PCh. 11 - Determine the allowable axial load Pallowfor a...Ch. 11 - Determine the allowable axial load Pallowfor a...Ch. 11 - Determine the allowable axial load Pallowfor a...Ch. 11 - -11 Determine the maximum permissible length...Ch. 11 - Determine the maximum permissible length Lmaxfor a...Ch. 11 - A steel pipe column with pinned ends supports an...Ch. 11 - The steel columns used in a college recreation...Ch. 11 - A W8 × 28 steel wide-flange column with pinned...Ch. 11 - Prob. 11.9.16PCh. 11 - Prob. 11.9.17PCh. 11 - Prob. 11.9.18PCh. 11 - Prob. 11.9.19PCh. 11 - Prob. 11.9.20PCh. 11 - Prob. 11.9.21PCh. 11 - An aluminum pipe column (alloy 2014-T6) with...Ch. 11 - Prob. 11.9.23PCh. 11 - Prob. 11.9.24PCh. 11 - Prob. 11.9.25PCh. 11 - Prob. 11.9.26PCh. 11 - Prob. 11.9.27PCh. 11 - Prob. 11.9.28PCh. 11 - Prob. 11.9.29PCh. 11 - Prob. 11.9.30PCh. 11 - A wood column with, a rectangular cross section...Ch. 11 - Prob. 11.9.32PCh. 11 - Prob. 11.9.33PCh. 11 - A square wood column with side dimensions b (see...Ch. 11 - A square wood column with side dimensions b (see...Ch. 11 - Prob. 11.9.36P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY