
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
3rd Edition
ISBN: 9781305367388
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 11.44PAE
11.44 A possible reaction for the degradation of the pesticide DDT to a less harmful compound was simulated in the laboratory. The reaction was found to be first order, with k = 4.0 X 10_H s"' at 25°C. What is the half-life for the degradation of DDT in this experiment, in years?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
In the electrode Pt, H2(1 atm) | H+(a=1), if the electrode balance potential is -0.118 V and the interface potential difference is +5 mV. The current voltage will be 0.005 - (-0.118) = 0.123 V ¿Correcto?
In the electrode Pt, H2(1 atm) | H+(a=1) at 298K is 0.79 mA cm-2. If the balance potential of the electrode is -0.118 V and the potential difference of the interface is +5 mV. Determine its potential.
In one electrode: Pt, H2(1 atm) | H+(a=1), the interchange current density at 298K is 0.79 mA·cm-2. If the voltage difference of the interface is +5 mV. What will be the correct intensity at pH = 2?. Maximum transfer voltage and beta = 0.5.
Chapter 11 Solutions
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
Ch. 11 - Prob. 1COCh. 11 - . define the rate of a chemical reaction and...Ch. 11 - Prob. 3COCh. 11 - Prob. 4COCh. 11 - . explain the difference between elementary...Ch. 11 - . find the rate law predicted for a particular...Ch. 11 - . use a molecular perspective to explain the...Ch. 11 - Prob. 8COCh. 11 - . explain the role of a catalyst in the design of...Ch. 11 - Prob. 11.1PAE
Ch. 11 - Prob. 11.2PAECh. 11 - In what region of the atmosphere is ozone...Ch. 11 - What are the steps in the Chapman cycle? Explain...Ch. 11 - What is the net chemical reaction associated with...Ch. 11 - At what points in the Chapman cycle do...Ch. 11 - Prob. 11.7PAECh. 11 - Prob. 11.8PAECh. 11 - Prob. 11.9PAECh. 11 - For each of the following, suggest appropriate...Ch. 11 - For each of the following, suggest an appropriate...Ch. 11 - Rank the following in order of increasing reaction...Ch. 11 - Prob. 11.13PAECh. 11 - Candle wax is a mixture of hydrocarbons. In the...Ch. 11 - Prob. 11.15PAECh. 11 - The reaction for the Haber process, the industrial...Ch. 11 - 11.17 Ammonia can react with oxygen to produce...Ch. 11 - The following data were obtained in the...Ch. 11 - Prob. 11.19PAECh. 11 - Experimental data are listed here for the reaction...Ch. 11 - Azomethane, CH3NNCH3, is not a stable compound,...Ch. 11 - Prob. 11.22PAECh. 11 - A reaction has the experimental rate equation Rate...Ch. 11 - Second-order rate constants used in modeling...Ch. 11 - For each of the rate laws below, what is the order...Ch. 11 - 11.26 The reaction of C(Xg) with NO2(g) is second...Ch. 11 - Prob. 11.27PAECh. 11 - Prob. 11.28PAECh. 11 - The hypothetical reaction, A + B —*C, has the rate...Ch. 11 - The rate of the decomposition of hydrogen...Ch. 11 - Prob. 11.31PAECh. 11 - 11.32 The following experimental data were...Ch. 11 - The following experimental data were obtained for...Ch. 11 - 11.34 Rate data were obtained at 25°C for the...Ch. 11 - 11.35 For the reaction 2 NO(g) + 2 H?(g) — N,(g) +...Ch. 11 - The reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a...Ch. 11 - Prob. 11.37PAECh. 11 - Prob. 11.38PAECh. 11 - The decomposition of N2O5 in solution in carbon...Ch. 11 - In Exercise 11.39, if the initial concentration of...Ch. 11 - 11.41 For a drug to be effective in treating an...Ch. 11 - Amoxicillin is an antibiotic packaged as a powder....Ch. 11 - As with any drug, aspirin (acetylsalicylic acid)...Ch. 11 - 11.44 A possible reaction for the degradation of...Ch. 11 - The initial concentration of the reactant in a...Ch. 11 - A substance undergoes first-order decomposition....Ch. 11 - Prob. 11.47PAECh. 11 - 11.48 The following data were collected for the...Ch. 11 - The rate of photodecomposition of the herbicide...Ch. 11 - Prob. 11.50PAECh. 11 - 11.51 Peroxyacetyl nitrate (PAN) has the chemical...Ch. 11 - Prob. 11.52PAECh. 11 - Hydrogen peroxide (H20i) decomposes into water and...Ch. 11 - use the kineticmolecular theory to explain why an...Ch. 11 - The activation energy for the reaction in which...Ch. 11 - The labels on most pharmaceuticals state that the...Ch. 11 - The following rate constants were obtained in an...Ch. 11 - The table below presents measured rate constants...Ch. 11 - Prob. 11.59PAECh. 11 - Prob. 11.60PAECh. 11 - Prob. 11.61PAECh. 11 - Prob. 11.62PAECh. 11 - Can a reaction mechanism ever be proven correct?...Ch. 11 - Prob. 11.64PAECh. 11 - Describe how the Chapman cycle is a reaction...Ch. 11 - Prob. 11.66PAECh. 11 - Prob. 11.67PAECh. 11 - Prob. 11.68PAECh. 11 - The following mechanism is proposed for a...Ch. 11 - 11.64 HBr is oxidized in the following reaction: 4...Ch. 11 - Prob. 11.71PAECh. 11 - If a textbook defined a catalyst as "a substance...Ch. 11 - Prob. 11.73PAECh. 11 - Prob. 11.74PAECh. 11 - What distinguishes homogeneous and heterogeneous...Ch. 11 - Prob. 11.76PAECh. 11 - Based on the kinetic theory of matter, what would...Ch. 11 - Prob. 11.78PAECh. 11 - In Chapter 3, we discussed the conversion of...Ch. 11 - The label on a bottle of 3% (by volume) hydrogen...Ch. 11 - Prob. 11.81PAECh. 11 - Prob. 11.82PAECh. 11 - Prob. 11.83PAECh. 11 - Prob. 11.84PAECh. 11 - Prob. 11.85PAECh. 11 - Prob. 11.86PAECh. 11 - Prob. 11.87PAECh. 11 - Prob. 11.88PAECh. 11 - Prob. 11.89PAECh. 11 - Prob. 11.90PAECh. 11 - Prob. 11.91PAECh. 11 - Prob. 11.92PAECh. 11 - Prob. 11.93PAECh. 11 - Prob. 11.94PAECh. 11 - 11.93 On a particular day, the ozone level in...Ch. 11 - Prob. 11.96PAECh. 11 - The following is a thought experiment. Imagine...Ch. 11 - The following statements relate to the reaction...Ch. 11 - Prob. 11.99PAECh. 11 - Experiments show that the reaction of nitrogen...Ch. 11 - Substances that poison a catalyst pose a major...Ch. 11 - Prob. 11.102PAECh. 11 - Prob. 11.103PAECh. 11 - 11.102 Suppose that you are studying a reaction...Ch. 11 - Prob. 11.105PAECh. 11 - Prob. 11.106PAECh. 11 - Prob. 11.107PAECh. 11 - Prob. 11.108PAECh. 11 - 11.1047 Fluorine often reacts explosively. What...Ch. 11 - Prob. 11.110PAECh. 11 - Prob. 11.111PAECh. 11 - When formic acid is heated, it decomposes to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- In a Pt electrode, H2(1 atm) | H+(a=1), the interchange current density of an electrode is 0.79 mA cm-2. ¿Qué corriente flow across the electrode of área 5 cm2 when the difference in potential of the interface is +5 mV?.arrow_forwardIf the current voltage is n = 0.14 V, indicate which of the 2 voltage formulas of the ley of Tafel must be applied i a a) == exp (1-B). xp[(1 - ß³): Fn Fn a b) == exp B RT RTarrow_forwardIf the current voltage is n = 0.14 V. Indicate which of the 2 formulas must be applied a) = a T = i exp[(1 - p) F Fn Fn b) i==exp B RTarrow_forward
- Topic: Photochemistry and Photophysics of Supramoleculesarrow_forwardTwo cations that exchange an electron in an interface, the exchange density is worth 1.39 mA/cm2 and the current density is worth 15 mA/cm2 at 25°C. If the overvoltage is 0.14 V, calculate the reaction rate and symmetry factor. Data: R = 8,314 J mol-1 k-1: F = 96500 Carrow_forwardWith the help of the Tafel line, it is estimated that the interchange density of the VO2+/VO2+ system on the carbon paper has a value of 3 mA cm-2. Calculate a) the current density if the voltage has a value of 1.6 mV and the temperature is 25°C. b) the beta value of the anódico process if the Tafel pendulum is 0.6 V at 25°C. Data: R = 8.314 JK-1mol-1, y F = 96485 C mol-1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning


Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY