
(a)
Interpretation:
The electronic configuration of the given element by using the symbol of the previous noble gas is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron that is moving freely in an orbital is given by the electronic configuration of that atom.

Answer to Problem 113AP
The electronic configuration of the given element, titanium, is
Explanation of Solution
The electronic configuration of titanium that has
This electronic configuration is shown by using the symbol of the noble gas, argon
(b)
Interpretation:
The electronic configuration of the given element by using the symbol of the previous noble gas is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron that is moving freely in an orbital is given by the electronic configuration of that atom.

Answer to Problem 113AP
The electronic configuration of the given element, selenium, is
Explanation of Solution
The electronic configuration of selenium that has atomic number equal to
This electronic configuration is shown by using the symbol of the noble gas, argon
(c)
Interpretation:
The electronic configuration of the given element by using the symbol of the previous noble gas is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron that is moving freely in an orbital is given by the electronic configuration of that atom.
The electronic configuration of the given element, antimony, is [ Kr ] 4 d 10 5 s 2 5 p 3 .
The electronic configuration of antimony that has atomic number equal to Z = 51 is shown as,
[ Kr ] 4 d 10 5 s 2 5 p 3
This electronic configuration is shown by using the symbol of the noble gas, krypton [ Kr ] , which has atomic number equal to 36 . The total number of core electrons, that is, 36 possessed by antimony is shown by the symbol of krypton [ Kr ] . The electronic configuration of krypton is 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 .
(c)
Interpretation:
The electronic configuration of the given element by using the symbol of the previous noble gas is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron that is moving freely in an orbital is given by the electronic configuration of that atom.
The electronic configuration of the given element, antimony, is
The electronic configuration of antimony that has atomic number equal to
This electronic configuration is shown by using the symbol of the noble gas, krypton

Answer to Problem 113AP
The electronic configuration of the given element, antimony, is
Explanation of Solution
The electronic configuration of antimony that has atomic number equal to
This electronic configuration is shown by using the symbol of the noble gas, krypton
(d)
Interpretation:
The electronic configuration of the given element by using the symbol of the previous noble gas is to be stated.
Concept Introduction:
The distribution of the electrons that exists in the atomic orbital of an atom is collectively known as electronic configuration. The description of every electron that is moving freely in an orbital is given by the electronic configuration of that atom.

Answer to Problem 113AP
The electronic configuration of the given element, strontium, is
Explanation of Solution
The electronic configuration of strontium that has atomic number equal to
This electronic configuration is shown by using the symbol of the noble gas, krypton
Want to see more full solutions like this?
Chapter 11 Solutions
Introductory Chemistry: A Foundation
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning




