A 60.0-kg woman stands at the western rim of a horizontal turntable having a moment of inertia of 500 kg · m 2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. Consider the woman–turntable system as motion begins. (a) Is the mechanical energy of the system constant? (b) Is the momentum of the system constant? (c) Is the angular momentum of the system constant? (d) In what direction and with what angular speed does the turntable rotate? (c) How much potential energy in the woman’s body is converted into mechanical energy of the woman–turntable system as the woman sets herself and the turntable into motion?
A 60.0-kg woman stands at the western rim of a horizontal turntable having a moment of inertia of 500 kg · m 2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. Consider the woman–turntable system as motion begins. (a) Is the mechanical energy of the system constant? (b) Is the momentum of the system constant? (c) Is the angular momentum of the system constant? (d) In what direction and with what angular speed does the turntable rotate? (c) How much potential energy in the woman’s body is converted into mechanical energy of the woman–turntable system as the woman sets herself and the turntable into motion?
Solution Summary: The author analyzes whether the mechanical energy of the system is constant or not. The angular momentum is the product of moment of inertia and the singular speed of any object.
A 60.0-kg woman stands at the western rim of a horizontal turntable having a moment of inertia of 500 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. Consider the woman–turntable system as motion begins. (a) Is the mechanical energy of the system constant? (b) Is the momentum of the system constant? (c) Is the angular momentum of the system constant? (d) In what direction and with what angular speed does the turntable rotate? (c) How much potential energy in the woman’s body is converted into mechanical energy of the woman–turntable system as the woman sets herself and the turntable into motion?
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
please help with the abstract. Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?
Chapter 11 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.